Search results

1 – 10 of 341
Article
Publication date: 4 September 2017

Kai Zhang, Tonghai Wu, Zhihe Duan, Qingfeng Meng and Qinghu Meng

For oil film thickness measurement using ultrasonic spring model, obtaining the isolated reflection from the oil film layer is the key point. While for oil film thickness…

Abstract

Purpose

For oil film thickness measurement using ultrasonic spring model, obtaining the isolated reflection from the oil film layer is the key point. While for oil film thickness measurement in thrust bearings with thin liner, the reflection from the substrate-Babbitt interface will overlap with the reflection from the oil film layer. This overlapping will render the ultrasonic spring model invalid. To obtain the isolated reflected signal from the oil film layer accurately, an adaptive method was developed to recover the overlapping echoes.

Design/methodology/approach

A genetic-algorithm-based support matching pursuit (GA-based SMP) was developed to provide the optimal echo number and initial parameters guesses automatically and efficiently. Then, the traditional expectation maximization (EM) model was used to fine tune the accurate results.

Findings

The developed method was tested using both simulated echoes and the overlapping echoes encountered in the ultrasonic oil film thickness measurement of thrust bearings. The results demonstrated that the developed method performed well on recovering overlapping echoes adaptively.

Originality/value

The work shows an adaptive method to recover the ultrasonic overlapping echoes. When used in ultrasonic oil film thickness measurement, it can help extend the application of traditional ultrasonic spring model to objects with four or more layers.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 September 2015

Kai Zhang, Qingfeng Meng, Wei Chen, Junning Li and Phil Harper

This paper aims to measure the oil film thickness between the roller and the inner ring in roller bearings by the ultrasonic method. The oil film thickness between the roller and…

Abstract

Purpose

This paper aims to measure the oil film thickness between the roller and the inner ring in roller bearings by the ultrasonic method. The oil film thickness between the roller and the inner ring in roller bearings is a key performance indicator of the bearing lubrication condition. As the oil film is very thin and the contact region is very narrow, measurement of this film thickness is very challenging. A promising ultrasonic method was used to measure this film thickness, and this method was expected to overcome some drawbacks in other methods.

Design/methodology/approach

A simplified roller bearing only configured one roller, and an inner ring was built up to investigate this measurement. A miniature piezoelectric element is bonded on the inner surface of the inner ring to measure the reflection coefficient from the layer of oil between the roller and the inner raceway. As the width of the line contact region is smaller than the width of the piezoelectric element, a ray model is used to calibrate the reflection coefficient measured. The quasi-static spring model is then used to calculate oil film thickness from the corrected reflection coefficient data.

Findings

The results measured by this method agree reasonably well with predictions from elastohydrodynamic lubrication (EHL) theory. Also, a dynamic displacement of the rig caused by the skid of the roller versus the inner ring was found under light-load and high-speed conditions.

Originality/value

This work shows that the oil film between the roller and the inner raceway in roller bearings can be measured accurately by ultrasound and shows a deal method when the contact width is smaller than the piezoelectric element width.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 April 2024

Fei Shang, Bo Sun and Dandan Cai

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal…

Abstract

Purpose

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal lubrication state. The oil film thickness is a crucial parameter reflecting the lubrication status of bearings, directly influencing the operational state of bearing transmission systems. However, it is challenging to accurately measure the oil film thickness under traditional disassembly conditions due to factors such as bearing structure and working conditions. Therefore, there is an urgent need for a nondestructive testing method to measure the oil film thickness and its status.

Design/methodology/approach

This paper introduces methods for optically, electrically and acoustically measuring the oil film thickness and status of bearings. It discusses the adaptability and measurement accuracy of different bearing oil film measurement methods and the impact of varying measurement conditions on accuracy. In addition, it compares the application scenarios of other techniques and the influence of the environment on detection results.

Findings

Ultrasonic measurement stands out due to its widespread adaptability, making it suitable for oil film thickness detection in various states and monitoring continuous changes in oil film thickness. Different methods can be selected depending on the measurement environment to compensate for measurement accuracy and enhance detection effectiveness.

Originality/value

This paper reviews the basic principles and latest applications of optical, electrical and acoustic measurement of oil film thickness and status. It analyzes applicable measurement methods for oil film under different conditions. It discusses the future trends of detection methods, providing possible solutions for bearing oil film thickness detection in complex engineering environments.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 August 2021

Gowtham Venkatraman, Adam Hehr, Leon M. Headings and Marcelo J. Dapino

Ultrasonic additive manufacturing (UAM) is a solid-state joining technology used for three-dimensional printing of metal foilstock. The electrical power input to the ultrasonic

Abstract

Purpose

Ultrasonic additive manufacturing (UAM) is a solid-state joining technology used for three-dimensional printing of metal foilstock. The electrical power input to the ultrasonic welder is a key driver of part quality in UAM, but under the same process parameters, it can vary widely for different build geometries and material combinations because of mechanical compliance in the system. This study aims to model the relationship between UAM weld power and system compliance considering the workpiece (geometry and materials) and the fixture on which the build is fabricated.

Design/methodology/approach

Linear elastic finite element modeling and experimental modal analysis are used to characterize the system’s mechanical compliance, and linear system dynamics theory is used to understand the relationship between weld power and compliance. In-situ measurements of the weld power are presented for various build stiffnesses to compare model predictions with experiments.

Findings

Weld power in UAM is found to be largely determined by the mechanical compliance of the build and insensitive to foil material strength.

Originality/value

This is the first research paper to develop a predictive model relating UAM weld power and the mechanical compliance of the build over a range of foil combinations. This model is used to develop a tool to determine the process settings required to achieve a consistent weld power in builds with different stiffnesses.

Article
Publication date: 12 September 2019

Hongliang Wang, Xiangjun Wang, Changde He and Chenyang Xue

As a new type of ultrasonic transducer with significant advantages, capacitive micromachined ultrasonic transducer (CMUT) has good application prospect. The reception…

Abstract

Purpose

As a new type of ultrasonic transducer with significant advantages, capacitive micromachined ultrasonic transducer (CMUT) has good application prospect. The reception characteristic of the CMUT is one of the important factors determining the application effect. This paper aims to study the reception characteristics of CMUT.

Design/methodology/approach

In this paper, the state equation is deduced and the analysis model is established in SIMULINK environment based on the lumped parameter system model of the CMUT cell. Based on this analysis model, the influencing factors of CMUT reception characteristics are studied and investigated, and the time-domain and frequency-domain characteristics are investigated in detail.

Findings

The analysis results show that parameters directly affect the reception characteristics of the CMUT, such as direct current (DC) bias voltage, input sound pressure amplitude and frequency. At the same time, the measurement system is built and the reception characteristics are verified.

Originality/value

This paper provides an effective method for rapid analyzing the reception characteristics of CMUT. These results provide an important theoretical basis and reference for further optimization of CMUT structure design, and lay a good foundation for the practical application measurement.

Details

Sensor Review, vol. 40 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 July 2013

Cun‐Cen Li, Ming Yang, Ya‐Fei Pang and Shi‐Yang Li

The purpose of this paper is to propose an optimization method by combining artificial immune algorithm and finite element analysis to find the optimal exciting electrode of a…

Abstract

Purpose

The purpose of this paper is to propose an optimization method by combining artificial immune algorithm and finite element analysis to find the optimal exciting electrode of a piezoceramic plate type ultrasonic motor vibrator.

Design/methodology/approach

The artificial immune algorithm is selected as optimizer for its merit of fast convergence to global optimal solution. The finite element analysis is used to calculate the motion trajectory of contact point. The objective function is the work that the vibrator does to rotor. The design variables are the boundaries of exciting electrode on piezoceramic plate vibrator surface.

Findings

The calculated results and the experimental results show that using this method, both the position and the size of optimal exciting electrode of this ultrasonic motor can be quickly and accurately determined.

Originality/value

In order to successfully design an ultrasonic motor, both the position and the size of the exciting electrode must be investigated, so as to change more electric energy into mechanical energy. In this paper, an optimization method by combining artificial immune algorithm and finite element analysis is proposed for the exciting location optimization of a piezoceramic plate type ultrasonic motor to obtain large power output.

Article
Publication date: 15 June 2010

James M. Gibert, Eric M. Austin and Georges Fadel

The purpose of this paper is to focus on the changing dynamics of the ultrasonic consolidation (UC) process due to changes in substrate geometry. Past research points to a…

Abstract

Purpose

The purpose of this paper is to focus on the changing dynamics of the ultrasonic consolidation (UC) process due to changes in substrate geometry. Past research points to a limiting height to width ranging from 0.7 to 1.2 on build features.

Design/methodology/approach

Resonances of a build feature due to a change in geometry are examined and then a simple non‐linear dynamic model of the UC process is constructed that examines how the geometry change may influence the overall dynamics of the process. This simple model is used to provide estimates of how substrate geometry affects the differential motion at the bonding interface and the amount of energy emitted by friction change due to build height. The trends of changes in natural frequency, differential motion, and frictional energy are compared to experimental limits on build height.

Findings

The paper shows that, at the nominal build, dimensions of the feature the excitation caused by the UC approach two resonances in the feature. In addition trends in regions of changes of differential motion, force of friction, and frictional energy follow the experimental limit on build height.

Originality/value

This paper explores several aspects of the UC process not currently found in the current literature: examining the modal properties of build features, and a lumped parameter dynamic model to account for the changes in of the substrate geometry.

Details

Rapid Prototyping Journal, vol. 16 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 October 2018

Clinton B. Morris, John M. Cormack, Mark F. Hamilton, Michael R. Haberman and Carolyn C. Seepersad

Microstereolithography is capable of producing millimeter-scale polymer parts having micron-scale features. Material properties of the cured polymers can vary depending on build…

Abstract

Purpose

Microstereolithography is capable of producing millimeter-scale polymer parts having micron-scale features. Material properties of the cured polymers can vary depending on build parameters such as exposure. Current techniques for determining the material properties of these polymers are limited to static measurements via micro/nanoindentation, leaving the dynamic response undetermined. The purpose of this paper is to demonstrate a method to measure the dynamic response of additively manufactured parts to infer the dynamic modulus of the material in the ultrasonic range.

Design/methodology/approach

Frequency-dependent material parameters, such as the complex Young’s modulus, have been determined for other relaxing materials by measuring the wave speed and attenuation of an ultrasonic pulse traveling through the materials. This work uses laser Doppler velocimetry to measure propagating ultrasonic waves in a solid cylindrical waveguide produced using microstereolithography to determine the frequency-dependent material parameters of the polymer. Because the ultrasonic wavelength is comparable with the part size, a model that accounts for both geometric and viscoelastic dispersive effects is used to determine the material properties using experimental data.

Findings

The dynamic modulus in the ultrasonic range of 0.4-1.3 MHz was determined for a microstereolithography part. Results were corroborated by using the same experimental method for an acrylic part with known properties and by evaluating the natural frequency and storage modulus of the same microstereolithography part with a shaker table experiment.

Originality/value

The paper demonstrates a method for determining the dynamic modulus of additively manufactured parts, including relatively small parts fabricated with microstereolithography.

Details

Rapid Prototyping Journal, vol. 24 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 June 2019

Rui Zhang, Lei Zhao, Dan Xie, Jinlong Song, Wendong Zhang, Lihu Pan and Yanhua Zhang

This study aims to simulate and test the performance of a transmitting and receiving capacitive micro-machined ultrasonic transducer (CMUT). Aimed at detecting demand of the CMUT…

185

Abstract

Purpose

This study aims to simulate and test the performance of a transmitting and receiving capacitive micro-machined ultrasonic transducer (CMUT). Aimed at detecting demand of the CMUT, a matched integrated adjustment circuit was designed through analyzing processing methods of transducer’s weak echo signal.

Design/methodology/approach

Based on the analysis of CMUT array structure and work principle, the CMUT units are designed and the dynamic performance analysis of SIMULINK is given according to the demand of underwater detecting. A transceiver isolation circuit is used to make transmission mode and receiving mode separate. A detection circuit is designed based on the transimpedance amplifier to achieve extraction of high-frequency and weak signal.

Findings

Through experimentation, the effectiveness of the CMUT performance simulation and the transceiver integrated adjustment circuit were verified. In addition, the test showed that CMUT with 400 kHz frequency has wider bandwidth and better dynamic characteristics than other similar transducers.

Originality/value

This paper provides a theoretical basis and design reference for the development and application of CMUT technology.

Article
Publication date: 1 February 1988

E.E. de Kluizenaar

Ultrasonic cleaning is an effective aid in the removal of flux residues from surface mounted circuits. However, an over‐intensive and too extended ultrasonic load of…

Abstract

Ultrasonic cleaning is an effective aid in the removal of flux residues from surface mounted circuits. However, an over‐intensive and too extended ultrasonic load of surface‐mounted electronic circuits, on ceramic substrates, occasionally causes the fracture of component leads. In a metallurgical study, it was found that the fracture mechanism is fatigue. The fundamental cure for this problem is to limit the ultrasonic load to a level below the fatigue limit of the leads. This can be achieved by limiting the ultrasonic power input in the bath. Other beneficial measures are to limit the cleaning time and the ultrasonic frequency, and to prevent the components from coming into contact with other parts during cleaning.

Details

Microelectronics International, vol. 5 no. 2
Type: Research Article
ISSN: 1356-5362

1 – 10 of 341