Search results

1 – 10 of over 1000
To view the access options for this content please click here
Article
Publication date: 5 April 2021

Zhixin Wang, Peng Xu, Bohan Liu, Yankun Cao, Zhi Liu and Zhaojun Liu

This paper aims to demonstrate the principle and practical applications of hyperspectral object detection, carry out the problem we now face and the possible solution…

Abstract

Purpose

This paper aims to demonstrate the principle and practical applications of hyperspectral object detection, carry out the problem we now face and the possible solution. Also some challenges in this field are discussed.

Design/methodology/approach

First, the paper summarized the current research status of the hyperspectral techniques. Then, the paper demonstrated the development of underwater hyperspectral techniques from three major aspects, which are UHI preprocess, unmixing and applications. Finally, the paper presents a conclusion of applications of hyperspectral imaging and future research directions.

Findings

Various methods and scenarios for underwater object detection with hyperspectral imaging are compared, which include preprocessing, unmixing and classification. A summary is made to demonstrate the application scope and results of different methods, which may play an important role in the application of underwater hyperspectral object detection in the future.

Originality/value

This paper introduced several methods of hyperspectral image process, give out the conclusion of the advantages and disadvantages of each method, then demonstrated the challenges we face and the possible way to deal with them.

Details

Sensor Review, vol. 41 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 18 May 2015

Robert Bogue

This paper aims to provide details of underwater robot technology and its applications.

Downloads
2148

Abstract

Purpose

This paper aims to provide details of underwater robot technology and its applications.

Design/methodology/approach

Following an introduction, this article first discusses remotely operated vehicle (ROV) technology and applications and then considers their use in the emerging field of deep-sea mining. It then discusses autonomous underwater vehicle (AUV) technology and its applications, including sub-sea gliders. Finally, brief concluding comments are drawn.

Findings

ROVs were first developed in the 1950s for military applications. They are now widely used by the offshore oil and gas sector and other industries and are being developed for deep-sea mining. AUV technology has progressed rapidly in recent years and AUVs, including sub-sea gliders, are now emerging from their original role in oceanographic research and finding growing uses in the defence and offshore energy sectors.

Originality/value

This provides a detailed insight into underwater robot technologies, products and applications.

Details

Industrial Robot: An International Journal, vol. 42 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 28 November 2018

Alexandra Pereira Nunes, Ana Rita Silva Gaspar, Andry M. Pinto and Aníbal Castilho Matos

This paper aims to present a mosaicking method for underwater robotic applications, whose result can be provided to other perceptual systems for scene understanding such…

Abstract

Purpose

This paper aims to present a mosaicking method for underwater robotic applications, whose result can be provided to other perceptual systems for scene understanding such as real-time object recognition.

Design/methodology/approach

This method is called robust and large-scale mosaicking (ROLAMOS) and presents an efficient frame-to-frame motion estimation with outlier removal and consistency checking that maps large visual areas in high resolution. The visual mosaic of the sea-floor is created on-the-fly by a robust registration procedure that composes monocular observations and manages the computational resources. Moreover, the registration process of ROLAMOS aligns the observation to the existing mosaic.

Findings

A comprehensive set of experiments compares the performance of ROLAMOS to other similar approaches, using both data sets (publicly available) and live data obtained by a ROV operating in real scenes. The results demonstrate that ROLAMOS is adequate for mapping of sea-floor scenarios as it provides accurate information from the seabed, which is of extreme importance for autonomous robots surveying the environment that does not rely on specialized computers.

Originality/value

The ROLAMOS is suitable for robotic applications that require an online, robust and effective technique to reconstruct the underwater environment from only visual information.

Details

Sensor Review, vol. 39 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 13 November 2019

Robert Bogue

This paper aims to provide details of recent developments in robots aimed at applications in the offshore oil and gas industries.

Abstract

Purpose

This paper aims to provide details of recent developments in robots aimed at applications in the offshore oil and gas industries.

Design/methodology/approach

Following a short introduction, this first discusses developments to remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs). It then describes the Total-sponsored Autonomous Robot for Gas and Oil Sites (ARGOS) robot challenge. This is followed by a discussion of the Offshore Robotics for Certification of Assets (ORCA) programme. Finally, brief concluding comments are drawn.

Findings

Subsea residency and other techniques are being developed that will enhance the availability and capabilities of AUVs and ROVs and reduce their operating costs. Mobile robots that can operate in harsh topside rig environments to monitor and detect hazards arose from ARGOS and are being developed further prior to commercialisation. Bringing together academics and users, the collaborative ORCA programme is making significant progress in the development of aerial, topside and underwater robotic and sensing technologies for rig asset inspection and maintenance.

Originality/value

This paper identifies and describes key development activities that will stimulate the use of robots by the offshore industries.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 17 August 2015

Yong Cao, Shusheng Bi, Yueri Cai and Yuliang Wang

– This paper aims to develop a robofish with oscillating pectoral fins, and control it to mimic the bionic prototype by central pattern generators (CPGs).

Abstract

Purpose

This paper aims to develop a robofish with oscillating pectoral fins, and control it to mimic the bionic prototype by central pattern generators (CPGs).

Design/methodology/approach

First, the oscillation characteristics of the cownose ray were analyzed quantitatively. Second, a robofish with multi-joint pectoral fins was developed according to the bionic morphology and kinematics. Third, the improved phase oscillator was established, which contains a spatial asymmetric coefficient and a temporal asymmetric coefficient. Moreover, the CPG network is created to mimic the cownose ray and accomplish three-dimensional (3D) motions. Finally, the experiments were done to test the authors ' works.

Findings

The results demonstrate that the CPGs is effective to control the robofish to imitate the cownose ray realistically. In addition, the robofish is able to accomplish 3D motions of high maneuverability, and change among different swimming modes quickly and smoothly.

Originality/value

The research provides the method to develop a robofish from both 3D morphology and kinematics. The motion analysis and CPG control make sure that the robofish has the features of high maneuverability and camouflage. It is useful for military underwater applications and underwater detections in narrow environments. Second, this work lays the foundation for the autonomous 3D control. Moreover, the robotic fish can be taken as a scientific tool for the fluid bionics research.

Details

Industrial Robot: An International Journal, vol. 42 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 1 June 1998

D. Maddalena, M. Zampato and M. Favaretto

In the paper, “TV‐trackmeter”, a stereoscopic measuring system developed by Tecnomare, is presented, some recent innovations and upgrading are described, and its reliable…

Abstract

In the paper, “TV‐trackmeter”, a stereoscopic measuring system developed by Tecnomare, is presented, some recent innovations and upgrading are described, and its reliable use in hostile environments proved. The latest release of the device implements highlighted featuring capabilities such as 3D measuring, automatic mapping, false colour depth‐maps, geometric modelling, multi‐point tracking, recording/retrieving of stereo pair images, and use of new and more powerful hardware. A theoretical introduction to the operating mode of a stereoscopic device, followed by an error propagation analysis is included. A brief description is also given of the accuracy of the device, i.e. pose detection (position and attitude estimation) of the scene objects. An evaluation of the tracking speed capability is provided. Some examples are shown of trials carried out within a nuclear power plant and underwater. Two further applications for this system are described.

Details

Sensor Review, vol. 18 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 29 October 2019

Ravinder Singh and Kuldeep Singh Nagla

The purpose of this research is to provide the necessarily and resourceful information regarding range sensors to select the best fit sensor for robust autonomous…

Abstract

Purpose

The purpose of this research is to provide the necessarily and resourceful information regarding range sensors to select the best fit sensor for robust autonomous navigation. Autonomous navigation is an emerging segment in the field of mobile robot in which the mobile robot navigates in the environment with high level of autonomy by lacking human interactions. Sensor-based perception is a prevailing aspect in the autonomous navigation of mobile robot along with localization and path planning. Various range sensors are used to get the efficient perception of the environment, but selecting the best-fit sensor to solve the navigation problem is still a vital assignment.

Design/methodology/approach

Autonomous navigation relies on the sensory information of various sensors, and each sensor relies on various operational parameters/characteristic for the reliable functioning. A simple strategy shown in this proposed study to select the best-fit sensor based on various parameters such as environment, 2 D/3D navigation, accuracy, speed, environmental conditions, etc. for the reliable autonomous navigation of a mobile robot.

Findings

This paper provides a comparative analysis for the diverse range sensors used in mobile robotics with respect to various aspects such as accuracy, computational load, 2D/3D navigation, environmental conditions, etc. to opt the best-fit sensors for achieving robust navigation of autonomous mobile robot.

Originality/value

This paper provides a straightforward platform for the researchers to select the best range sensor for the diverse robotics application.

Content available
Article
Publication date: 1 August 2003

Downloads
81

Abstract

Details

Industrial Robot: An International Journal, vol. 30 no. 4
Type: Research Article
ISSN: 0143-991X

Content available
Article
Publication date: 1 August 2005

Downloads
41

Abstract

Details

Industrial Robot: An International Journal, vol. 32 no. 4
Type: Research Article
ISSN: 0143-991X

Content available
Article
Publication date: 1 October 2005

Downloads
88

Abstract

Details

Industrial Robot: An International Journal, vol. 32 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 1000