Search results

1 – 10 of 361
Article
Publication date: 6 November 2017

Yanzhong Wang, Yang Liu, Wen Tang and Peng Liu

The finite element method has been increasingly applied in stress, thermal and dynamic analysis of gear transmissions. Preparing the models with different design and modification

Abstract

Purpose

The finite element method has been increasingly applied in stress, thermal and dynamic analysis of gear transmissions. Preparing the models with different design and modification parameters for the finite element analysis is a time-consuming and highly skilled burden.

Design/methodology/approach

To simplify the preprocessing work of the analysis, a parametric finite element modeling method for spur and helical gears including profile and lead modification is developed. The information about the nodes and elements is obtained and exported into the finite element software to generate the finite element model of the gear automatically.

Findings

By using the three-dimensional finite element tooth contact analysis method, the effects of tooth modifications on the transmission error and contact stress of spur and helical gears are presented.

Originality/value

The results demonstrate that the proposed method is useful for verifying the modification parameters of spur and helical gears in the case of deformations and misalignments.

Details

Engineering Computations, vol. 34 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 September 2024

Mohammed Abdulaal and Mohammad Q. Abdulah

Crossed helical gears have point contact and their surfaces are subject to high surface stress. Contact stress and root tooth stress are the most common sources of failure in…

Abstract

Purpose

Crossed helical gears have point contact and their surfaces are subject to high surface stress. Contact stress and root tooth stress are the most common sources of failure in crossed helical gear. This paper aims to study the load-carrying capacity and performance of crossed helical gear teeth with different gear tooth profiles. To overcome defects and reduce the sensitivity to small shaft angle changes. The combined tooth profile is designed to reduce the bending stresses, contact stresses and tooth deflection, and prevent pinion failure in the gearbox.

Design/methodology/approach

The principle of the method is a line contact is introduced instead of a point contact between two teeth in mesh with each other. The tooth surface of the helical gear is designed and cut by a modified tool. Higher normal pressure angles like 25° and 35° are used. The modified involute is accomplished to eliminate interference between the teeth. Engineering software packages have been applied to generate all crossed helical gears gear profiles. The modification is compounding curves consisting of an epicycloid-involute-hypocycloid gear teeth profile generated by the cutter modified.

Findings

The stresses in the crossed helical gear teeth profile were reduced by increasing the normal pressure angle values. Using a 35° pressure angle the enhancement percentage in contact stress and teeth fillet region will be about 29.345% and 15.421%, respectively. The best enhancement in a gear’s resistance is the epicycloid-involute-hypocycloid gear teeth profile. The enhancement was 32.610% and 18.588%. The skew in line of action in skewed helical gear will be sensitive when the crossing angles are small. Their teeth surface tends to be easily worn out; however, the wearing process will be reduced by using a proposed gear teeth profile.

Practical implications

The gear teeth to be modified are cut by a shaper process. The modifying rack cutter of this study can be used as a reference for creating a different helical gears sample. The helical teeth surface is modified to become an envelope of the other. This makes an original point contact change into a line contact. The epicycloid-involute-hypocycloid gear teeth profile is preferred for a higher contact ratio and a large load capacity. This work explicitly introduces a new method of kinematic consideration to improve the load capacity of crossed helical gear.

Originality/value

This paper showed some novel results by the unique shape of the rack-cutter designed to generate different helical angles and different gear positions. In the future, it will make valuable contributions to the further development of the dynamic performance of a crossed helical gear system through the study in the field of using asymmetric teeth profiles of helical gears with tip relief as the manner to enhance the crossed helical gear performance. Investigation of crossed helical gear by applying a predesigned parabolic function of transmission error enables the absorption of linear discontinuous functions caused by misalignment.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 March 2023

Omar D. Mohammed

This paper aims to present an analytical approach for the determination of helical gear tooth geometry and introduces the necessary parameters. Tooth geometry including tooth

Abstract

Purpose

This paper aims to present an analytical approach for the determination of helical gear tooth geometry and introduces the necessary parameters. Tooth geometry including tooth chamfer, involute curve, root fillet, helix as well as tooth microgeometry can be obtained using the presented approach.

Design/methodology/approach

The presented analytical approach involves deriving the equivalent equations at the transverse plane rather than the normal plane. Moreover, numerical evaluation of microgeometry modifications is presented for tooth profile, tooth lead and flank twist.

Findings

An analytical approach is presented and equations are derived and explained in detail for helical gear tooth geometry calculation, including tooth microgeometry. Method 1, which was presented by Lopez and Wheway (1986) for obtaining the root fillet, is examined and it is proven that it does not work accurately for helical gears, but rather it works perfectly in the case of spur gears. Changing the normal plane parameters in Method 1 to the transverse plane ones does not give correct results. Two alternative methods, namely, Methods 2 and 3, are developed in the current research for the calculation of the tooth root fillet of helical gears. The presented methods and also the numerical evaluation presented for microgeometry modification are examined against the geometry obtained from Windows LDP software. The results show very good agreement, and it is feasible to apply the approach using the presented equations.

Originality/value

In the gear design process, it is important to model the correct gear tooth geometry and deliver all related dimensions and calculations accurately. However, the determination of helical gear tooth geometry has not been presented adequately by equations to facilitate gear modelling. The detailed helical gear tooth root has been enveloped using software tools that can simulate the cutter motion. Deriving those equations, presented in this article, provides gear design engineers and researchers with the possibility to model helical gears and perform design calculations in a structured, applicable and accurate method.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 22 September 2022

Yue Liu and Jiayu Gong

The purpose of this paper is to investigate the thermal elastohydrodynamic lubrication (TEHL) flash temperature of the helical gear pairs considering profile modification.

Abstract

Purpose

The purpose of this paper is to investigate the thermal elastohydrodynamic lubrication (TEHL) flash temperature of the helical gear pairs considering profile modification.

Design/methodology/approach

A flash temperature model of the helical gear pair considering the profile modification is proposed based on the TEHL and meshing theories. In doing so, the slicing, fast Fourier transform and chase-after methods are applied to accurately and rapidly obtain the flash temperature of the gear pair. Then, the effects of the modification, input torque and rotation speed on the flash temperature are studied.

Findings

With the increment of the tip relief amount, the flash temperature of the helical gear pair with the axial modification decreases first and then increases, and the meshing position of the maximum flash temperature moves toward the pitch point. Moreover, reducing the input torque or increasing the rotation speed can efficiently reduce the TEHL flash temperature.

Originality/value

This work is a valuable reference for the profile design and optimization of the helical gears to avoid the excessive flash temperature.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 July 2020

Shengnan Zhang, Z.l. Sun, Zhenliang Yu and Fanyi Guo

The purpose of this paper is to establish a transient contact position prediction method of gears at the meshing point based on the equivalent contact model.

Abstract

Purpose

The purpose of this paper is to establish a transient contact position prediction method of gears at the meshing point based on the equivalent contact model.

Design/methodology/approach

In this method, the contacting surface profiles are constantly updated by changing the pressure angle and the chord tooth thickness, which has a direct connection with the equivalent base circle radius. According to the equivalent base circle radius, the equivalent pressure angle at the pitch circle and equivalent pitch point can be calculated. The equivalent contacting surface profile is determined by the equivalent pressure angle at the pitch circle; for each meshing point, there is one equivalent pressure angle at the pitch circle. Therefore, each meshing point can be regarded as a point on the equivalent contacting surface profile.

Findings

The model is applicable to find out the contact position after a series of meshing cycles through the law of pressure angle change and intentionally kept as simple as possible with the aim to be used in further study of gear flanks at the point of the actual contact.

Practical implications

The results of the experiment are applied to the equivalent contact model to describe the transient contact position and assess the model accuracy.

Originality/value

The determination of the contact position of the worn tooth profile provides the action points of the force for the study of the contact fatigue.

Details

Engineering Computations, vol. 38 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 August 2021

Yong-Hua Li, Chi Zhang, Hao Yin, Yang Cao and Xiaoning Bai

This paper proposes an improved fatigue life analysis method for optimal design of electric multiple units (EMU) gear, which aims at defects of traditional Miner fatigue…

169

Abstract

Purpose

This paper proposes an improved fatigue life analysis method for optimal design of electric multiple units (EMU) gear, which aims at defects of traditional Miner fatigue cumulative damage theory.

Design/methodology/approach

A fatigue life analysis method by modifying SN curve and considering material difference is presented, which improves the fatigue life of EMU gear based on shape modification optimization. A corrected method for stress amplitude, average stress and SN curve is proposed, which considers low stress cycle, material difference and other factors. The fatigue life prediction of EMU gear is carried out by corrected SN curve and transient dynamic analysis. Moreover, the gear modification technology combined with intelligent optimization method is adopted to investigate the approach of fatigue life analysis and improvement.

Findings

The results show that it is more corresponded to engineering practice by using the improved fatigue life analysis method than the traditional method. The function of stress and modification amount established by response surface method meets the requirement of precision. The fatigue life of EMU gear based on the intelligent algorithm for seeking the optimal modification amount is significantly improved compared with that before the modification.

Originality/value

The traditional fatigue life analysis method does not consider the influence of working condition and material. The life prediction results by using the method proposed in this paper are more accurate and ensure the safety of the people in the EMU. At the same time, the combination of intelligent algorithm and gear modification can improve the fatigue life of gear on the basis of accurate prediction, which is of great significance to the portability of EMU maintenance.

Details

International Journal of Structural Integrity, vol. 12 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 November 2020

Duncai Lei, Xiannian Kong, Siyu Chen, Jinyuan Tang and Zehua Hu

The purpose of this paper is to investigate the dynamic responses of a spur gear pair with unloaded static transmission error (STE) excitation numerically and experimentally and…

347

Abstract

Purpose

The purpose of this paper is to investigate the dynamic responses of a spur gear pair with unloaded static transmission error (STE) excitation numerically and experimentally and the influences of the system factors including mesh stiffness, error excitation and torque on the dynamic transmission error (DTE).

Design/methodology/approach

A simple lumped parameters dynamic model of a gear pair considering time-varying mesh stiffness, backlash and unloaded STE excitation is developed. The STE is calculated from the measured tooth profile deviation under the unloaded condition. A four-square gear test rig is designed to measure and analyze the DTE and vibration responses of the gear pair. The dynamic responses of the gear transmission are studied numerically and experimentally.

Findings

The predicted numerical DTE matches well with the experimental results. When the real unloaded STE excitation without any approximation is used, the dynamic response is dominated by the mesh frequency and its high order harmonic components, which may not be result caused by the assembling error. The sub-harmonic and super-harmonic resonant behaviors are excited because of the high order harmonic components of STE. It will not certainly prevent the separations of mesh teeth when the gear pair is under the condition of high speed and heavy load.

Originality/value

This study helps to improve the modeling method of the dynamic analysis of spur gear transmission and provide some reference for the understanding of the influence of mesh stiffness, STE excitation and system torque on the vibration behaviors.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 April 2008

Ludvík Prášil and Jaroslav Mackerle

The finite element method (FEM) has become the prevalent technique used for analyzing physical phenomena in the field of structural, solid and fluid mechanics. The output of…

3227

Abstract

Purpose

The finite element method (FEM) has become the prevalent technique used for analyzing physical phenomena in the field of structural, solid and fluid mechanics. The output of scientific papers is fast growing and professionals are no longer able to be fully up‐to‐date with all the relevant information. The purpose of this paper is to provide a bibliographical review on the application of FEM in mechanical engineering, specifically for the analyses and simulations of gears and gear drives from the theoretical as well as practical points of view.

Design/methodology/approach

The following topics on gears and gear drives are handled from the computational points of view: gears in general, spur gears, helical gears, spiral bevel and hypoid gears, worm gears and other gear types and gear drives. The paper is organized into two parts. In the first one each topic is handled in a short text, relevant keywords are presented and current trends in applications of finite element techniques are briefly mentioned. The second part lists references of papers published for the period 1997‐2006.

Findings

This bibliography is intended to serve the needs of engineers and researchers as a comprehensive source of published papers on design, analysis and simulation of gears and gear drives.

Originality/value

The bibliography listed is by no means complete but it gives a comprehensive representation of different finite element applications on the subjects. It will save time for readers looking for information dealing with described subjects, not having an access to large databases or willingness to spend time with uncertain information retrieval.

Details

Engineering Computations, vol. 25 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 August 2018

Prashant Jaysing Patil, Maharudra Patil and Krishnakumar Joshi

The aim of this paper is to study the effect of pressure angle and helix angle on bending stress at the root of helical gear tooth under dynamic state. Gear design is a highly…

Abstract

Purpose

The aim of this paper is to study the effect of pressure angle and helix angle on bending stress at the root of helical gear tooth under dynamic state. Gear design is a highly complex process. The consistent demand to build low-cost, quieter and efficient machinery has resulted in a gradual change in gear design. Gear parameters such as pressure angle, helix angle, etc. affect the load-carrying capacity of gear teeth. Adequate load-carrying capacity of a gear is a prime requirement. The failure at the critical section because of bending stress is an unavoidable phenomenon. Besides this fact, the extent of these failures can be reduced by a proper gear design. The stresses produced under dynamic loading conditions in machine member differ considerably from those produced under static loading.

Design/methodology/approach

The present work is intended to study the effect of pressure angle and helix angle on the bending stress at the root of helical gear tooth under dynamic state. The photostress method has been used as experimental methods. Theoretical analysis was carried out by velocity factor method and Spott’s equation. LS DYNA has been used for finite element (FE) analysis.

Findings

The results show that experimental method gives a bending stress value that is closer to the true value, and bending stress varies with pressure angle and helix angle. The photostress technique gives clear knowledge of stress pattern at root of tooth.

Originality/value

The outcomes of this work help the designer use optimum weight-to-torque ratio of gear; this is ultimately going to reduce the total bulk of the gear box.

Details

World Journal of Engineering, vol. 15 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 November 2021

Junguo Wang, Zhaoyuan Yao, M.F. Hassan and Yongxiang Zhao

The paper is devoted to presenting a systematic investigation on the mechanical model and nonlinear dynamic characteristics of spur gear system with and without input shaft crack.

Abstract

Purpose

The paper is devoted to presenting a systematic investigation on the mechanical model and nonlinear dynamic characteristics of spur gear system with and without input shaft crack.

Design/methodology/approach

Considering the backlash, load-distribution, time-varying meshing stiffness and sliding friction, the modelling of a 5DOF gear system is proposed. Likewise, stiffness and damping models under elastohydrodynamic lubrication are developed, and sliding friction between gear pair is also outlined. In particular, a cracked input shaft which affects the support stiffness is presented, and breathing crack in keyway is adopted. On this basis, the dynamic responses of a gear system with and without input shaft crack are examined using numerical method, and some classical response diagrams are given, illustrating the effect of the important parameters on the gear system.

Findings

Dynamic simulation demonstrates that there exist periodic, quasi-periodic and chaotic motions in the gear system, and rational speed of the gear pair has noteworthy effects on vibration characteristic. Besides, comparison between healthy and cracked condition of input shaft indicates that occurring of crack convert periodic motion to quasi-periodic or chaotic motion.

Originality/value

The results give an understanding of the operating conditions under which undesirable dynamic behavior occurs, and provide some useful information to design and diagnose such gear system with crack fault.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 361