Search results

1 – 10 of 449
Article
Publication date: 22 March 2021

Iman Mazinani, Mohammad Mohsen Sarafraz, Zubaidah Ismail, Ahmad Mustafa Hashim, Mohammad Reza Safaei and Somchai Wongwises

Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges…

Abstract

Purpose

Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges. Thus, experimental tests in a wave flume and a fluid structure interaction (FSI) analysis were constructed to gain insight into tsunami bore force on coastal bridges.

Design/methodology/approach

Various wave heights and shallow water were used in the experiments and computational process. A 1:40 scaled concrete bridge model was placed in mild beach profile similar to a 24 × 1.5 × 2 m wave flume for the experimental investigation. An Arbitrary Lagrange Euler formulation for the propagation of tsunami solitary and bore waves by an FSI package of LS-DYNA on high-performance computing system was used to evaluate the experimental results.

Findings

The excellent agreement between experiments and computational simulation is shown in results. The results showed that the fully coupled FSI models could capture the tsunami wave force accurately for all ranges of wave heights and shallow depths. The effects of the overturning moment, horizontal, uplift and impact forces on a pier and deck of the bridge were evaluated in this research.

Originality/value

Photos and videos captured during the Indian Ocean tsunami in 2004 and the 2011 Japan tsunami showed solitary tsunami waves breaking offshore, along with an extremely turbulent tsunami-induced bore propagating toward shore with significantly higher velocity. Consequently, the outcomes of this current experimental and numerical study are highly relevant to the evaluation of tsunami bore forces on the coastal, over sea or river bridges. These experiments assessed tsunami wave forces on deck pier showing the complete response of the coastal bridge over water.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 May 2019

George Bikakis, Nikolaos Tsigkros, Emilios Sideridis and Alexander Savaidis

The purpose of this paper is to investigate the ballistic impact response of square clamped fiber-metal laminates and monolithic plates consisting of different metal alloys using…

Abstract

Purpose

The purpose of this paper is to investigate the ballistic impact response of square clamped fiber-metal laminates and monolithic plates consisting of different metal alloys using the ANSYS LS-DYNA explicit nonlinear analysis software. The panels are subjected to central normal high velocity ballistic impact by a cylindrical projectile.

Design/methodology/approach

Using validated finite element models, the influence of the constituent metal alloy on the ballistic resistance of the fiber-metal laminates and the monolithic plates is studied. Six steel alloys are examined, namely, 304 stainless steel, 1010, 1080, 4340, A36 steel and DP 590 dual phase steel. A comparison with the response of GLAss REinforced plates is also implemented.

Findings

It is found that the ballistic limits of the panels can be substantially affected by the constituent alloy. The stainless steel based panels offer the highest ballistic resistance followed by the A36 steel based panels which in turn have higher ballistic resistance than the 2024-T3 aluminum based panels. The A36 steel based panels have higher ballistic limit than the 1010 steel based panels which in turn have higher ballistic limit than the 1080 steel based panels. The behavior of characteristic impact variables such as the impact load, the absorbed impact energy and the projectile’s displacement during the ballistic impact phenomenon is analyzed.

Originality/value

The ballistic resistance of the aforementioned steel fiber-metal laminates has not been studied previously. This study contributes to the scientific knowledge concerning the impact response of steel-based fiber-metal laminates and to the construction of impact resistant structures.

Details

International Journal of Structural Integrity, vol. 10 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 January 2010

Ron Layman, Samy Missoum and Jonathan Vande Geest

The use of stent‐grafts to canalize aortic blood flow for patients with aortic aneurysms is subject to serious failure mechanisms such as a leak between the stent‐graft and the…

Abstract

Purpose

The use of stent‐grafts to canalize aortic blood flow for patients with aortic aneurysms is subject to serious failure mechanisms such as a leak between the stent‐graft and the aorta (Type I endoleak). The purpose of this paper is to describe a novel computational approach to understand the influence of relevant variables on the occurrence of stent‐graft failure and quantify the probability of failure for aneurysm patients.

Design/methodology/approach

A parameterized fluid‐structure interaction finite element model of aortic aneurysm is built based on a multi‐material formulation available in LSDYNA. Probabilities of failure are assessed using an explicit construction of limit state functions with support vector machines (SVM) and uniform designs of experiments. The probabilistic approach is applied to two aneurysm geometries to provide a map of probabilities of failure for various design parameter values.

Findings

Parametric studies conducted in the course of this research successfully identified intuitive failure regions in the parameter space, and failure probabilities were calculated using both a simplified and more complex aneurysmal geometry.

Originality/value

This research introduces the use of SVM‐based explicit design space decomposition for probabilistic assessment applied to bioengineering problems. This technique allows one to efficiently calculate probabilities of failure. It is particularly suited for problems where outcomes can only be classified as safe or failed (e.g. leak or no leak). Finally, the proposed fluid‐structure interaction simulation accounts for the initiation of Type I endoleak between the graft and the aneurysm due to simultaneous fluid and solid forces.

Details

Engineering Computations, vol. 27 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 December 2023

Huifeng Xi, Xiangbo Shu, Manjie Chen, Huanliang Zhang, Shi-qing Huang and Heng Xiao

The primary objective of this study is characterizing the anisotropic mechanical properties of corrugated cardboard and simultaneously simulating its drop cushioning dynamic…

Abstract

Purpose

The primary objective of this study is characterizing the anisotropic mechanical properties of corrugated cardboard and simultaneously simulating its drop cushioning dynamic effects under various drop conditions.

Design/methodology/approach

Static and dynamic tests were conducted on corrugated cardboard to obtain adequate experimental data in different directions. An effective anisotropic constitutive model is introduced by developing the honeycomb materials model in ANSYS LS-Dyna, and an effective approach is established toward effectively determining the material parameters from the test data obtained. The model is validated by comparing simulation results with experimental data from five drop conditions, including bottom drop, front drop, side drop, 30° side drop and edge drop. Additionally, simulations are conducted to study the cushioning performance of the packaging by dropping the corrugated cardboard at different heights.

Findings

The study establishes a fast and effective approach to simulating the drop cushioning performance of corrugated cardboard under various drop conditions, which demonstrates good agreement with experimental data.

Originality/value

This approach is of value for packaging protection and provides guidance for stacking of packaging during transportation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 March 2007

Yizhi Guo, Xianlong Jin and Junhong Ding

Taking into account the long‐term influences of the non‐linear behavior of the material as well as the large deformation and contact conditions, the limiting factors of the…

Abstract

Purpose

Taking into account the long‐term influences of the non‐linear behavior of the material as well as the large deformation and contact conditions, the limiting factors of the computer simulation are the computer runtime and the memory requirement during solution of seismic response analysis for immersed tunnel. This research aims to overcome these problems.

Design/methodology/approach

This research deals with parallel explicit finite element simulation with domain decomposition for seismic response analysis of immersed tunnel, which is the non‐linear and time‐dependent behavior of complex structures in engineering. A domain decomposition method based on parallel contact algorithm and dynamic‐explicit time integration procedure are used, and the latter is used for the solution of the semi‐discrete equations of motion, which is very suited for parallel processing. Using the high performance computer SGI Onyx3800, the seismic response analysis of the immersed tunnel in Shanghai is processed with more than 1.2 million nodes and more than 1 million elements in final finite element model.

Findings

The results show numerical scalability of this algorithm and reveal the dangerous joints in this immersed tunnel under Tangshan seismic acceleration, and it could also provide references for the antiseismic design of the immersed tunnel.

Originality/value

With the increasing demands in the scale, accuracy and speed of numerical simulation in geotechnical engineering, parallel computing has its great application in this area. This paper fulfils an identified method need, and it is believed more and more research work will be devoted to this research field in the near future.

Details

Engineering Computations, vol. 24 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 January 2021

Saba Gharehdash, Bre-Anne Louise Sainsbury, Milad Barzegar, Igor B. Palymskiy and Pavel A. Fomin

This research study aims to develop regular cylindrical pore network models (RCPNMs) to calculate topology and geometry properties of explosively created fractures along with…

253

Abstract

Purpose

This research study aims to develop regular cylindrical pore network models (RCPNMs) to calculate topology and geometry properties of explosively created fractures along with their resulting hydraulic permeability. The focus of the investigation is to define a method that generates a valid geometric and topologic representation from a computational modelling point of view for explosion-generated fractures in rocks. In particular, extraction of geometries from experimentally validated Eulerian smoothed particle hydrodynamics (ESPH) approach, to avoid restrictions for image-based computational methods.

Design/methodology/approach

Three-dimensional stabilized ESPH solution is required to model explosively created fracture networks, and the accuracy of developed ESPH is qualitatively and quantitatively examined against experimental observations for both peak detonation pressures and crack density estimations. SPH simulation domain is segmented to void and solid spaces using a graphical user interface, and the void space of blasted rocks is represented by a regular lattice of spherical pores connected by cylindrical throats. Results produced by the RCPNMs are compared to three pore network extraction algorithms. Thereby, once the accuracy of RCPNMs is confirmed, the absolute permeability of fracture networks is calculated.

Findings

The results obtained with RCPNMs method were compared with three pore network extraction algorithms and computational fluid dynamics method, achieving a more computational efficiency regarding to CPU cost and a better geometry and topology relationship identification, in all the cases studied. Furthermore, a reliable topology data that does not have image-based pore network limitations, and the effect of topological disorder on the computed absolute permeability is minor. However, further research is necessary to improve the interpretation of real pore systems for explosively created fracture networks.

Practical implications

Although only laboratory cylindrical rock specimens were tested in the computational examples, the developed approaches are applicable for field scale and complex pore network grids with arbitrary shapes.

Originality/value

It is often desirable to develop an integrated computational method for hydraulic conductivity of explosively created fracture networks which segmentation of fracture networks is not restricted to X-ray images, particularly when topologic and geometric modellings are the crucial parts. This research study provides insight to the reliable computational methods and pore network extraction algorithm selection processes, as well as defining a practical framework for generating reliable topological and geometrical data in a Eulerian SPH setting.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2014

Roberto Flores, Enrique Ortega and Eugenio Onate

The purpose of this paper is to describe a set of simple yet effective, numerical method for the design and evaluation of parachute-payload system. The developments include a…

Abstract

Purpose

The purpose of this paper is to describe a set of simple yet effective, numerical method for the design and evaluation of parachute-payload system. The developments include a coupled fluid-structural solver for unsteady simulations of ram-air type parachutes. The main features of the computational tools are described and several numerical examples are provided to illustrate the performance and capabilities of the technique.

Design/methodology/approach

For an efficient solution of the aerodynamic problem, an unsteady panel method has been chosen exploiting the fact that large areas of separated flow are not expected under nominal flight conditions of ram-air parachutes. A dynamic explicit finite element solver is used for the structure. This approach yields a robust solution even when highly nonlinear effects due to large displacements and material response are present. The numerical results show considerable accuracy and robustness.

Findings

A simple and effective numerical tool for the analysis of parachutes has been developed.

Originality/value

An analysis code has been developed which addresses the needs of ram-air parachute designers. The software delivers reasonably accurate results in a short time using modest hardware. It can therefore assist the design process, which nowadays relies on empirical methods.

Details

Engineering Computations, vol. 31 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2000

Ramin Moshfegh, Xiangdong Li and Larsgunnar Nilsson

Two mesh refinement indicators based on the gradients of effective stress (GSIG) and effective plastic strain (GEPS), respectively, are proposed for adaptive finite element…

Abstract

Two mesh refinement indicators based on the gradients of effective stress (GSIG) and effective plastic strain (GEPS), respectively, are proposed for adaptive finite element analysis of the large deformation, quasi‐static or dynamic response of shell structures. The mesh refinement indicators are based on equi‐distributing the variation of stresses or plastic strains over the elements of the mesh. A program module is developed and implemented in the non‐linear explicit finite element code LSDYNA. This module provides element‐wise refinement evaluations so that selective mesh refinements are carried out in regions of the mesh where the values of local indicators exceed a user‐specified tolerance. The FE model of a conventional deep drawing process is used as a numerical model, including both material and geometrical non‐linearities, in order to demonstrate the versatility of the two refinement indicators. Four different refinement indicators, based on angle change, thickness change, GSIG and GEPS, are applied in this investigation. The numerical results are compared with experimental results regarding the thickness distribution versus cup height, cup height variation versus circumference angle, effective plastic strain in the deformed sheet and punch force. It is shown that the proposed indicators can identify finite elements which have high gradients of effective stress or effective plastic strain so that the mesh is refined in the regions undergoing the most severe deformations and the numerical results are improved.

Details

Engineering Computations, vol. 17 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 September 2014

Andrej Škrlec, Jernej Klemenc and Matija Fajdiga

In the event of a crash involving a car, its seats, together with their backrests and head supports, ensure the safety of the passengers. The filling material used for such a car…

Abstract

Purpose

In the event of a crash involving a car, its seats, together with their backrests and head supports, ensure the safety of the passengers. The filling material used for such a car seat is normally made of polyurethane foam. To simulate the behaviour of the seat assembly during a crash, the material characteristics of the seat-filling foam should be appropriately modelled. The purpose of this paper is to present a method, with which the proper parameter values of the selected material model for the seat-filling foam can be easily determined.

Design/methodology/approach

In the study, an experiment with the specimen from seat-filling foam was carried out. The results from this experiment were the basis for the determination of the parameter values of the low-density-foam material model, which is often used in crash-test simulations. Two different numerical optimisation algorithms – a genetic algorithm and a gradient-descent algorithm – were coupled with LS-DYNA explicit simulations to identify the material parameters.

Findings

The paper provides comparison of two optimisation algorithms and discusses the engineering applicability of the results.

Originality/value

This paper presents an approach for the identification of the missing parameter values of the highly non-linear material model, if these cannot be easily determined directly from experimental data.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 February 2015

Adik Yadao and R. S. Hingole

Today’s car is one of the most important things in everyone’s life .Every person wants to have his or her own car but the question that arises in each buyer’s mind is whether the…

173

Abstract

Today’s car is one of the most important things in everyone’s life .Every person wants to have his or her own car but the question that arises in each buyer’s mind is whether the vehicle is safe enough to spend so much of money so it is the responsibility of an mechanical engineer to make the vehical comfortable and at the Same time safer. Now a days automakers are coming with various energy absorbing devices such as crush box, door beams etc. this energy absorbing device s prove to be very useful in reducing the amount force that is being transmitted to the occupant. In this we are using impact energy absorber in efficient manner as compare to earlier. The various steps involved in this project starting from developing the cad model of this inner impact energy absorber using the CAD software CATIA V5 R19. Then pre-processing is carried out in HYPERMESH 11.0 which includes assigning material, properties, boundary conditions such as contacts, constraints etc. LS-DYNA971 is used as a solver and LS-POST is used for the post processing and results obtained are compared to the standards. By carrying out this idea it has been observed that there is a considerable amount of energy that is being absorbed by this energy-absorbing device. Along with this energy absorption, the intrusion in passenger compartment is also reduced by considerable amount. So for safer and comfortable car with inner impact energy absorber is one of the best options available. This will get implement by this research work.

Details

World Journal of Engineering, vol. 12 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 449