Search results

1 – 7 of 7
Open Access
Article
Publication date: 15 November 2022

Liyao Song, Bai Chen, Bo Li, Rupeng Zhu and Dan Wang

The supercritical design of tail rotor drive shaft has attracted more attention in helicopter design due to its high power–weight ratio and low maintenance cost. However, there…

Abstract

Purpose

The supercritical design of tail rotor drive shaft has attracted more attention in helicopter design due to its high power–weight ratio and low maintenance cost. However, there exists excessive vibration when the shaft passes through the critical frequency. Dry friction damper is the equipment applied to the drive shaft to suppress the excessive vibration. In order to figure out the damping mechanism of the dry friction damper and improve the damping efficiency, the dynamic model of the shaft/damper system is established based on the Jeffcott rotor model.

Design/methodology/approach

The typical frequency response of the system is studied through bifurcation diagrams, amplitude-frequency characteristic curves and waterfall frequency response spectrum. The typical transient responses under frequency sweeps are also obtained.

Findings

The results show that the response of the system changes from periodic no-rub motion to quasi-periodic rub-impact motion, and then to synchronous full annular rub-impact, and finally, back to periodic no-rub motion. The slip of the rub-impact ring improves the stability of the system. Besides, the effects of the system parameters including critical dry friction force, rub-impact friction coefficient, initial clearance on the stability and the vibration damping capacity are studied. It is observed that the stability changes significantly varying the three parameters respectively. The vibration damping capacity is mainly affected by the critical dry friction force and the initial clearance.

Originality/value

Presented results provide guidance for the design of the dry friction damper.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 2 August 2019

Yazhou Mao, Yang Jianxi, Xu Wenjing and Liu Yonggang

The purpose of this paper is to investigate the effect of round pits arrangement patterns on tribological properties of journal bearing. In this paper, the tribological behaviors…

Abstract

Purpose

The purpose of this paper is to investigate the effect of round pits arrangement patterns on tribological properties of journal bearing. In this paper, the tribological behaviors of journal bearing with different arrangement patterns under lubrication condition were studied based on M-2000 friction and wear tester.

Design/methodology/approach

The friction and wear of journal bearing contact surface were simulated by ANSYS. The wear mechanism of bearing contact surfaces was investigated by the means of energy dispersive spectrum analysis on the surface morphology and friction and wear status of the journal bearing specimens by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). Besides, the wearing capacity of the textured bearing was predicted by using the GM (1,1) and Grey–Markov model.

Findings

As the loads increase, the friction coefficient of journal bearing specimens decrease first and then increase slowly. The higher rotation speed, the lower friction coefficient and the faster temperature build-up. The main friction method of the bearing sample is three-body friction. The existence of texture can effectively reduce friction and wear. In many arrangement patterns, the best is 4# bearing with round pits cross-arrangement pattern. Its texturing diameters are 60 µm and 125 µm, and the spacing and depth are 200 µm and 25 µm, respectively. In addition, the Grey–Markov model prediction result is more accurate and fit the experimental value better.

Originality/value

The friction and wear mechanism is helpful for scientific research and engineers to understand the tribological behaviors and engineering applications of textured bearing. The wear capacity of textured bearing is predicted by using the Grey–Markov model, which provides technical help and theoretical guidance for the service life and reliability of textured bearing.

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 14 July 2022

Lauren Alex O'Hagan

This paper aims to historicise the contemporary chlorophyll trend through the first academic study of its early marketing in Sweden (1950–1953). Using multimodal critical…

1184

Abstract

Purpose

This paper aims to historicise the contemporary chlorophyll trend through the first academic study of its early marketing in Sweden (1950–1953). Using multimodal critical discourse analysis, it demonstrates how brands used advertisements to convince female consumers of chlorophyll’s necessity to fulfil certain aspirational goals.

Design/methodology/approach

In all, 150 advertisements for chlorophyll products were collected from the Swedish Historical Newspaper Archive, as well as 600 additional advertisements for the three most popular products (toothpaste/mouthwash, sanitary towels and soap) from 1940 to 1950 and from 1954 to 1964. Then, multimodal critical discourse analysis was used to investigate how the products were marketed before, during and after the chlorophyll trend, identifying the general themes and linguistic/semiotic structures of the advertisements.

Findings

This paper shows how the commercial use of chlorophyll offered a lucrative opportunity for marketers, acting as a “tabula rasa” on which they could use discourses of science, nature, idealised femininity and luxury to draw connections with health, modernity and beauty, despite the product having no real purpose or value.

Originality/value

Viewing this fad from a historical perspective emphasises how brands, marketers and influencers continue to capitalise on the anxieties of female consumers with promises around beauty, hygiene and health. It, thus, offers us critical distance to reflect on contemporary claims about chlorophyll’s health benefits to make informed choices.

Details

Journal of Historical Research in Marketing, vol. 14 no. 3
Type: Research Article
ISSN: 1755-750X

Keywords

Open Access
Article
Publication date: 9 December 2019

Jihai Jiang, Wei-Peng Yan and Ge-Qiang Li

The purpose of this paper is to analyze the micro-motion of the cylinder block.

Abstract

Purpose

The purpose of this paper is to analyze the micro-motion of the cylinder block.

Design/methodology/approach

Based on the elasto-hydrodynamic lubrication, a numerical model for the cylinder block/valve plate interface is proposed, with consideration of the elastic deformations, the pressure-viscosity effect and asperity contacts. The influence-function method is applied to calculating the actual deformations of the cylinder block and the valve plate. The asperity contact model simplified from Greenwood assumption is introduced into the numerical model. Furthermore, the relationship between the micro-motion and the operating condition, the sealing belt width is discussed, respectively.

Findings

The results show an increase in the discharge pressure causes the tilt state and the vibrating motion getting worse, which can be eased by improving the rotational speed, the sealing belt width and the ratio of external and internal sealing belt width.

Originality/value

The proposed research can provide a theoretical reference for the optimizing design of cylinder block/valve plate pair.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 23 September 2022

Katharina Jahn, Frederike Marie Oschinsky, Bastian Kordyaka, Alla Machulska, Tanja Joan Eiler, Armin Gruenewald, Tim Klucken, Rainer Brueck, Carl Friedrich Gethmann and Bjoern Niehaves

Immersive virtual reality (IVR) has been frequently proposed as a promising tool for learning. However, researchers have commonly implemented a plethora of design elements in…

1042

Abstract

Purpose

Immersive virtual reality (IVR) has been frequently proposed as a promising tool for learning. However, researchers have commonly implemented a plethora of design elements in these IVR systems, which makes the specific aspects of the system that are necessary to achieve beneficial outcomes unclear. Against this background, this study aims to combine the literature on presence with learning theories to propose that the ability of IVR to present 3D objects to users improves the presence of these objects in the virtual environment compared with 2D objects, leading to increased learning performance.

Design/methodology/approach

To test this study’s hypotheses, the authors conducted a 2 (training condition: approach vs avoid) x 2 (object presence: high vs low) between-subjects laboratory experiment that used IVR with 83 female participants.

Findings

The results support this study’s hypotheses and show that training with high object presence leads to greater reactions to cues (chocolate cravings) and improved health behaviour (chocolate consumption).

Originality/value

This study shows that increased object presence leads to unique experiences for users, which help reinforce training effects. Moreover, this work sheds further light on how immersive computer technologies can affect user attitudes and behaviour. Specifically, this work contributes to IVR research by showing that learning effects can be enhanced through an increased degree of object presence.

Details

Internet Research, vol. 32 no. 7
Type: Research Article
ISSN: 1066-2243

Keywords

Open Access
Article
Publication date: 10 July 2019

Hoyon Hwang, Jaeyoung Cha and Jon Ahn

The purpose of this paper is to present the development of an optimal design framework for high altitude long endurance solar unmanned aerial vehicle. The proposed solar aircraft…

3747

Abstract

Purpose

The purpose of this paper is to present the development of an optimal design framework for high altitude long endurance solar unmanned aerial vehicle. The proposed solar aircraft design framework provides a simple method to design solar aircraft for users of all levels of experience.

Design/methodology/approach

This design framework consists of algorithms and user interfaces for the design of experiments, optimization and mission analysis that includes aerodynamics, performance, solar energy, weight and flight distances.

Findings

The proposed sizing method produces the optimal solar aircraft that yields the minimum weight and satisfies the constraints such as the power balance, the night time energy balance and the lift coefficient limit.

Research limitations/implications

The design conditions for the sizing process are given in terms of mission altitudes, flight dates, flight latitudes/longitudes and design factors for the aircraft configuration.

Practical implications

The framework environment is light and easily accessible as it is implemented using open programs without the use of any expensive commercial tools or in-house programs. In addition, this study presents a sizing method for solar aircraft as traditional sizing methods fail to reflect their unique features.

Social implications

Solar aircraft can be used in place of a satellite and introduce many advantages. The solar aircraft is much cheaper than the conventional satellite, which costs approximately $200-300m. It operates at a closer altitude to the ground and allows for a better visual inspection. It also provides greater flexibility of missions and covers a wider range of applications.

Originality/value

This study presents the implementation of a function that yields optimized flight performance under the given mission conditions, such as climb, cruise and descent for a solar aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 7 of 7