Search results

21 – 30 of over 11000
Article
Publication date: 15 August 2016

Ben Brown, Wes Everhart and Joe Dinardo

In the development of powder bed additive manufacturing (AM) process parameters, the characterization of mechanical properties is generally performed through relatively large…

Abstract

Purpose

In the development of powder bed additive manufacturing (AM) process parameters, the characterization of mechanical properties is generally performed through relatively large mechanical test samples that represent a bulk response. This provides an accurate representation of mechanical properties for equivalently sized or larger parts. However, as feature size is reduced, mechanical properties transition from a standard bulk response to a thin wall response where lower power border scans and surface roughness have a larger effect.

Design/methodology/approach

For this study, samples of wall thickness varying between 4.0 and 0.25 mm were built in 304L on the selective laser melting (SLM) platform and Ti-6Al-4V on the electron beam melting (EBM) platform. Samples were then mechanically tested, and fractography was performed for analysis.

Findings

This study experimentally identifies the threshold between bulk and thin wall mechanical properties for 304L SS on the SLM platform and Ti-6Al-4V on the EBM platform. A possible method for improving those properties and shifting the transition from bulk to thin wall response to smaller wall thicknesses by manipulation of scan pattern was investigated.

Originality/value

This study is a novel investigation into the effect of reduced wall thickness on the mechanical properties of a part produced by powder bed AM.

Details

Rapid Prototyping Journal, vol. 22 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 June 2010

Kamran Mumtaz and Neil Hopkinson

The purpose of this paper is to investigate the selective laser melting (SLM) of Inconel 625 using pulse shape control to vary the energy distribution within a single laser pulse…

2897

Abstract

Purpose

The purpose of this paper is to investigate the selective laser melting (SLM) of Inconel 625 using pulse shape control to vary the energy distribution within a single laser pulse. It aims to discuss the effectiveness of pulse shaping, including potential benefits for use within SLM.

Design/methodology/approach

Laser parameters were varied in order to identify optimal parameters that produced thin wall parts with a low surface roughness without the use of pulse shape control. Pulse shape control was then employed to provide gradual heating or a prolonged cooling effect with a variety of peak power/pulse energy combinations. Properties of pulse shaped and nonpulse shaped parts were compared, with particular attention focused on part surface roughness and width.

Findings

High peak powers tended to reduce top surface roughness and reduce side roughness as recoil pressures flatten out the melt pool and inhibit melt pool instabilities from developing. Ramp up energy distribution can reduce the maximum peak power required to melt material and reduce material spatter generation during processing due to a localized preheating effect. Ramp down energy distribution prolonged melt pool solidification allowing more time for molten material to redistribute, subsequently reducing the top surface roughness of parts. However, larger melt pools and longer solidification times increased the side roughness of parts due to a possible lateral expulsion of material from the melt pool.

Originality/value

This paper is the first of its kind to employ laser pulse shape control during SLM to process material from powder bed. It is a useful aid in unveiling relationships between laser energy distribution and the formation of parts.

Details

Rapid Prototyping Journal, vol. 16 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 September 2021

José M. Zea Pérez, Jorge Corona-Castuera, Carlos Poblano-Salas, John Henao and Arturo Hernández Hernández

The purpose of this paper is to study the effects of printing strategies and processing parameters on wall thickness, microhardness and compression strength of Inconel 718…

Abstract

Purpose

The purpose of this paper is to study the effects of printing strategies and processing parameters on wall thickness, microhardness and compression strength of Inconel 718 superalloy thin-walled honeycomb lattice structures manufactured by laser powder bed fusion (L-PBF).

Design/methodology/approach

Two printing contour strategies were applied for producing thin-walled honeycomb lattice structures in which the laser power, contour path, scanning speed and beam offset were systematically modified. The specimens were analyzed by optical microscopy for dimensional accuracy. Vickers hardness and quasi-static uniaxial compression tests were performed on the specimens with the least difference between the design wall thickness and the as built one to evaluate their mechanical properties and compare them with the counterparts obtained by using standard print strategies.

Findings

The contour printing strategies and process parameters have a significant influence on reducing the fabrication time of thin-walled honeycomb lattice structures (up to 50%) and can lead to improve the manufacturability and dimensional accuracy. Also, an increase in the young modulus up to 0.8 times and improvement in the energy absorption up to 48% with respect to those produced by following a standard strategy was observed.

Originality/value

This study showed that printing contour strategies can be used for faster fabrication of thin-walled lattice honeycomb structures with similar mechanical properties than those obtained by using a default printing strategy.

Details

Rapid Prototyping Journal, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1446

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 January 2016

Mengqi Yuan and David Bourell

– This paper aims to analyze the additive manufacturing orientation effect of laser sintered polyamide 12 (PA 12) optically translucent parts.

Abstract

Purpose

This paper aims to analyze the additive manufacturing orientation effect of laser sintered polyamide 12 (PA 12) optically translucent parts.

Design/methodology/approach

Plates with small features, wedges and lithophanes were laser sintered on a SinterStation HiQ™ in different orientations using PA 12. Lithophane performance was assessed using a Picker 240050 X-ray view/light box. All parts were examined using stereomicroscopy to capture the small features.

Findings

The quality of the lithophane image was substantially improved by orienting the flat plate side to the incident backlit light. Sintering in the ZX/ZY plane significantly increased the contrast and resolution compared to sintering in the XY plane. The thinnest feature thickness possible in the SinterStation HiQ is in the XY plane 0.13 mm, and it is 0.57 mm when manufacturing in the ZX/ZY plane.

Research limitations/implications

The laser spot size and other machine parameters were not changeable, which limited the manufacturing resolution. Oblique, non-orthogonal orientations were not investigated.

Originality/value

This is a first effort to investigate the manufacturing orientation effect of laser sintered polyamide optically translucent parts. The manufacturing resolutions on different planes were defined.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 1997

Emmanuel Sabourin, Scott A. Houser and Jan Helge Bøhn

Describes a new approach to fast layered manufacturing. The improvements in speed are achieved entirely through software control of existing commercial layered manufacturing…

1314

Abstract

Describes a new approach to fast layered manufacturing. The improvements in speed are achieved entirely through software control of existing commercial layered manufacturing equipment. In particular, the exterior regions of a part are built with thin layers to provide a precise, smooth exterior surface, while its interior regions are built with fast, thick layers to reduce overall build time. This approach has been implemented and tested with .STL CAD models on a Stratasys FDM 1600 rapid prototyping system, where a 50‐80 per cent reduction in build time of dense parts has been achieved without reducing surface quality or part integrity.

Details

Rapid Prototyping Journal, vol. 3 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 August 2020

Dongqing Yang, Jun Xiong and Rong Li

This paper aims to fabricate inclined thin-walled components using positional wire and arc additive manufacturing (WAAM) and investigate the heat transfer characteristics of…

280

Abstract

Purpose

This paper aims to fabricate inclined thin-walled components using positional wire and arc additive manufacturing (WAAM) and investigate the heat transfer characteristics of inclined thin-walled parts via finite element analysis method.

Design/methodology/approach

An inclined thin-walled part is fabricated in gas metal arc (GMA)-based additive manufacturing using a positional deposition approach in which the torch is set to be inclined with respect to the substrate surface. A three-dimensional finite element model is established to simulate the thermal process of the inclined component based on a general Goldak double ellipsoidal heat source and a combined heat dissipation model. Verification tests are performed based on thermal cycles of locations on the substrate and the molten pool size.

Findings

The simulated results are in agreement with experimental tests. It is shown that the dwell time between two adjacent layers greatly influences the number of the re-melting layers. The temperature distribution on both sides of the substrate is asymmetric, and the temperature peaks and temperature gradients of points in the same distance from the first deposition layer are different. Along the deposition path, the temperature distribution of the previous layer has a significant influence on the heat dissipation condition of the next layer.

Originality/value

The established finite element model is helpful to simulate and understand the heat transfer process of geometrical thin-walled components in WAAM.

Details

Rapid Prototyping Journal, vol. 26 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 November 2019

Xun Xu, Haidong Yu, Yunyong Li and Xinmin Lai

The structure stiffness is greatly affected by the fixture constraints during assembly due to the flexibility of large-scale thin-walled structures. The compliant deformation of…

Abstract

Purpose

The structure stiffness is greatly affected by the fixture constraints during assembly due to the flexibility of large-scale thin-walled structures. The compliant deformation of structures is usually not consistent for the non-uniform stiffness in various clamping schemes. The purpose of this paper is to investigate the correlation between the assembly quality and the clamping schemes of structures with various initial deviations and geometrical parameters, which is based on the proposed irregular quadrilateral plate element via absolute nodal coordinate formulation (ANCF).

Design/methodology/approach

Two typical clamping schemes are specified for the large-scale thin-walled structures. Two typical deviation modes are defined in both free and clamping states in the corresponding clamping schemes. The new irregular quadrilateral plate element via ANCF is validated to analyze the compliant deformation of assembled structures. The quasi-static force equilibrium equations are extended considering the factors of clamping constraints and geometric deviations.

Findings

The initial deviations and geometrical parameters strongly affect the assembly deviations of structures in two clamping schemes. The variation tendencies of assembly deviations are demonstrated in details with the circumferential clamping position and axial clamping position in two clamping schemes, providing guidance to optimize the fixture configuration. The assembly quality of structures with deviations can be improved by configuration synthesis of the clamping schemes.

Originality/value

Typical over-constraint clamping schemes and deviation modes in clamping states are defined for large-scale thin-walled structures. The plate element via ANCF is extended to analyze the assembly deviations of thin-walled structures in various clamping schemes. Based on the proposed theoretical model, the effects of clamping schemes and initial deviations on the deformation and assembly deviation propagation of structures are investigated.

Details

Assembly Automation, vol. 40 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 17 October 2016

Ruolong Qi, Weijia Zhou, Huijie Zhang, Wei Zhang and Guangxin Yang

The weld joint of large thin-wall metal parts which deforms in manufacturing and clamping processes is very difficult to manufacture for its shape is different from the initial…

Abstract

Purpose

The weld joint of large thin-wall metal parts which deforms in manufacturing and clamping processes is very difficult to manufacture for its shape is different from the initial model; thus, the space normals of the part surface are uncertain.

Design/methodology/approach

In this paper, an effective method is presented to calculate cutter location points and to estimate the space normals by measuring some sparse discrete points of weld joint. First, a contact-type probe fixed in the end of friction stir welding (FSW) robot is used to measure a series of discrete points on the weld joint. Then, a space curve can be got by fitting the series of points with a quintic spline. Second, a least square plane (LSP) of the measured points is obtained by the least square method. Then, normal vectors of the plane curve, which is the projection of the space curve on the LSP, are used to estimate the space normals of the weld joint curve. After path planning, a post-processing method combing with FSW craft is elaborated.

Findings

Simulation and real experiment demonstrate that the proposed strategy, which obtains cutter locations of welding and normals without measuring the entire surface, is feasible and effective for the FSW of large thin-walled complex surface parts.

Originality/value

This paper presents a novel method which makes it possible to accurately weld the large thin-wall complex surface part by the FSW robot. The proposed method might be applied to any multi-axes FSW robot similar to the robot studied in this paper.

Details

Industrial Robot: An International Journal, vol. 43 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

21 – 30 of over 11000