Search results

1 – 10 of 166
Article
Publication date: 15 June 2015

Mengqi Yuan and David L. Bourell

The purpose of this paper is to report selected optical properties of laser sintered polyamide 12 blank plates under different monochromatic and white light conditions and to…

Abstract

Purpose

The purpose of this paper is to report selected optical properties of laser sintered polyamide 12 blank plates under different monochromatic and white light conditions and to apply these properties in production of laser sintered lithophanes.

Design/methodology/approach

A UNICO 1201E spectrophotometer was used to measure the transmittance of laser sintered polyamide 12 plates as a function of plate thickness. Monochromatic light-emitting diodes were used to assess the wavelength dependence on the transmission and contrast as captured by a SONY DSC-W55 camera.

Findings

The transmittance decreased with increasing plate thickness which varied significantly depending on the monochromatic wavelength. Highest transmission was observed using green light (525 nm) and poorest transmission was measured for yellow light (589 nm).

Research limitations/implications

There is a limit to the amount of contrast obtained in polyamide lithophanes because the thickness of the plates is limited to less than about 5 mm. Greater thickness results in discernible topology on the lithophane which impairs the quality of the image.

Originality/value

Light transmittance of polyamide 12 plates under different lighting conditions is reported and applied to optically defined laser sintered lithophanes.

Details

Rapid Prototyping Journal, vol. 21 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 January 2024

James Tarver, Kieran Nar and Candice Majewski

The purpose of this paper is to elucidate the extent to which the mechanisms of polymer melt viscous flow and finish layer powder particle adhesion influence the top surface…

Abstract

Purpose

The purpose of this paper is to elucidate the extent to which the mechanisms of polymer melt viscous flow and finish layer powder particle adhesion influence the top surface topographies of laser sintered polyamide (PA12) components.

Design/methodology/approach

Laser sintered specimens were manufactured at varying laser parameters in accordance with a full factorial design of experiments. Focus variation microscopy was used to ascertain insight into their top surface heights and peak/valley distributions. Subsequently, regression expressions were generated to model the former with respect to applied laser parameters. Auxiliary experimental analysis was also performed to validate the proposed mechanisms and statistical models.

Findings

Within the parameter range tested, this work found the root mean square (Sq) and skewness (Ssk) roughness responses of laser sintered PA12 top surfaces to be inversely related to one another, and both also principally influenced by beam spacing. Furthermore, it was demonstrated that using optimised laser parameters (to promote polymer melt dispersion) and building without finish layers (to avert subsequent powder particle adhesion) reduced the mean Sq roughness of resultant topographies by 30.8% and 47.9% relative to standard laser sintered PA12 top surfaces, respectively.

Practical implications

The scope to which laser sintered PA12 top surfaces can be modified was highlighted.

Originality/value

This research demonstrated the impact the mechanisms of polymer melt viscous flow and finish layer powder particle adhesion have on laser sintered PA12 top surfaces.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 March 2012

Monika Blattmeier, Gerd Witt, Johannes Wortberg, Jan Eggert and Jochen Toepker

The purpose of this paper is to provide macromechanical insight into the fatigue behaviour of laser sintered parts and to understand the influence of the laser sintered surface…

1115

Abstract

Purpose

The purpose of this paper is to provide macromechanical insight into the fatigue behaviour of laser sintered parts and to understand the influence of the laser sintered surface structure on this behaviour.

Design/methodology/approach

A background on the technological maturity of manufacturing processes and the demand for structural and aesthetic properties of laser sintered plastic products is given. As the contribution of surface structure on part quality was the focus, laser sintered specimens with and without surface finishes, as well as injection moulded specimens were used. The latter simply served as a comparison and was not intended to qualify injection moulding. The study comprises the determination of short‐term tensile properties, the load increase method for investigating fracture and deformation behaviours, and fatigue crack propagation analysis.

Findings

According to the test results, the contribution of laser sintered surface structures to relevant mechanical properties can be neglected. Under dynamic loading conditions, laser sintered specimens achieved a longer lifetime but showed less deformation capabilities in contrast to injection moulded specimens. In general, laser sintered specimens presented considerable resistance to crack initiation and propagation.

Research limitations/implications

Because of the long‐term approach of the research, the number of tests conducted per lot was limited. Thus, the effects of different process settings and the reproducibility could not be fully analysed.

Practical implications

The studied fatigue behaviour of laser sintered specimens has implications for the functional testing of parts or components, for the product and process design as well as for the general compatibility of laser sintering as a manufacturing technology of end‐customer products.

Originality/value

The value of this paper lies in the better understanding of deformation and fracture behaviours of laser sintered polymers.

Article
Publication date: 18 January 2016

Mengqi Yuan and David Bourell

– This paper aims to analyze the additive manufacturing orientation effect of laser sintered polyamide 12 (PA 12) optically translucent parts.

Abstract

Purpose

This paper aims to analyze the additive manufacturing orientation effect of laser sintered polyamide 12 (PA 12) optically translucent parts.

Design/methodology/approach

Plates with small features, wedges and lithophanes were laser sintered on a SinterStation HiQ™ in different orientations using PA 12. Lithophane performance was assessed using a Picker 240050 X-ray view/light box. All parts were examined using stereomicroscopy to capture the small features.

Findings

The quality of the lithophane image was substantially improved by orienting the flat plate side to the incident backlit light. Sintering in the ZX/ZY plane significantly increased the contrast and resolution compared to sintering in the XY plane. The thinnest feature thickness possible in the SinterStation HiQ is in the XY plane 0.13 mm, and it is 0.57 mm when manufacturing in the ZX/ZY plane.

Research limitations/implications

The laser spot size and other machine parameters were not changeable, which limited the manufacturing resolution. Oblique, non-orthogonal orientations were not investigated.

Originality/value

This is a first effort to investigate the manufacturing orientation effect of laser sintered polyamide optically translucent parts. The manufacturing resolutions on different planes were defined.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 April 2015

Miriam Johanna Haerst, Romano Wolf, Markus Schönberger, Erich Wintermantel, Kurt Engelsing, Peter Heidemeyer and Martin Bastian

The purpose of this paper is to describe the ageing behaviour of polyamide 12 (PA12) after clinical use. The research is focused on the comparison of the processing methods…

Abstract

Purpose

The purpose of this paper is to describe the ageing behaviour of polyamide 12 (PA12) after clinical use. The research is focused on the comparison of the processing methods injection moulding and laser sintering.

Design/methodology/approach

Test specimens are subjected to a cyclic stress of defined bending, cleaning, disinfection and sterilization. The focus of interest in this research is the degradation and reduction of mechanical properties.

Findings

Mechanical and optical changes of the materials after clinical use and hygienic reprocessing are evaluated and discussed.

Research limitations/implications

This article is focused on PA12 and, therefore, enables a very specific statement for the clinical use of PA12. The processing methods could have different impacts depending on the polymer.

Originality/value

With the increasing application of polymers in medical devices, the mechanical properties must be ensured even after long-term clinical use. A systematic research with a realistic and still-defined cyclic stress is shown in this paper. Especially the testing of laser sintered polymers compared to injection moulded material has an important message for future patient-specific products.

Details

Rapid Prototyping Journal, vol. 21 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 September 2013

Mengqi Yuan, Timothy T Diller, David Bourell and Joseph Beaman

The purpose of this paper is to acquire thermal conductivities of both fresh and preheated polyamide 12 powder under various conditions to provide a basis for effective and…

Abstract

Purpose

The purpose of this paper is to acquire thermal conductivities of both fresh and preheated polyamide 12 powder under various conditions to provide a basis for effective and accurate control during the laser sintering (LS) process.

Design/methodology/approach

A Hot Disk® TPS 500 thermal measurement system using a transient plane source (TPS) technology was employed for thermal conductivity measurements. Polyamide 12 powder was packed at different densities, and different carrier gases were used. Tests were also performed on fully dense laser sintered polyamide 12 to establish a baseline.

Findings

Polyamide 12 powder thermal conductivity varies with packing density and temperature, which is approximately one-third bulk form thermal conductivity. Inter-particle bonding is the primary factor influencing polyamide 12 thermal conductivity.

Research limitations/implications

Limited ranges of density were tested, and the carrier gas needed carefully control to prevent powder oxidation. Thermal properties obtained were not tested in the LS process.

Originality/value

This experimental result could be used to enhance thermal control during the LS process.

Details

Rapid Prototyping Journal, vol. 19 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 June 2016

Sushant Negi and Rajesh Kumar Sharma

The purpose of this paper is to provide a better understanding of process parameters that have a significant effect on the shrinkage behaviour of laser-sintered PA 3200GF…

Abstract

Purpose

The purpose of this paper is to provide a better understanding of process parameters that have a significant effect on the shrinkage behaviour of laser-sintered PA 3200GF specimens.

Design/methodology/approach

A five-factor, three-level and face-centred central composite design was used to collect data, and two methods, namely, response surface methodology (RSM) and artificial neural network (ANN) were used for predicting shrinkage. Sensitivity analysis based on the developed empirical equations has been carried out to determine the most significant parameter, which contributes the most to control shrinkage. In addition, a comparative analysis has also been performed for the results obtained by RSM and ANN.

Findings

The results revealed that part bed temperature, scan speed and scan spacing are the three dominant parameters, which have a great influence on shrinkage. Strong interactions between laser power-scan spacing, laser power-scan length and scan speed-scan spacing have been observed. Through sensitive analysis, it is observed that shrinkage is more sensitive to the scan speed variations than other four process parameters.

Practical implications

This study can be used as a guide, and the demonstrated results will provide a good technical database to the different additive manufacturing users of various industries such as automobile, aerospace and medical.

Originality/value

To the best of the authors’ knowledge, this is the first study to report the shrinkage behaviour of laser-sintered PA 3200GF parts fabricated under different sintering conditions.

Details

Rapid Prototyping Journal, vol. 22 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 January 2012

M.M. Savalani, L. Hao, P.M. Dickens, Y. Zhang, K.E. Tanner and R.A. Harris

Hydroxyapatite‐polymer composite materials are being researched for the development of low‐load bearing implants because of their bioactive and osteoconductive properties, while…

1271

Abstract

Purpose

Hydroxyapatite‐polymer composite materials are being researched for the development of low‐load bearing implants because of their bioactive and osteoconductive properties, while avoiding modulus mismatch found in homogenous materials. For the direct production of hydroxyapatite‐polymer composite implants, selective laser sintering (SLS) has been used and various parameters and their effects on the physical properties (micro and macro morphologies) have been investigated. The purpose of this paper is to identify the most influential parameters on the micro and macro pore morphologies of sintered hydroxyapatite‐polymer composites.

Design/methodology/approach

A two‐level full factorial experiment was designed to evaluate the effects of the various processing parameters and their effects on the physical properties, including open porosity, average pore width and the percentage of pores which could enable potential bone regeneration and ingrowth of the sintered parts. The density of the sintered parts was measured by weight and volume; optical microscopy combined with the interception method was used to determine the average pore size and proportion of pores suitable to enable bone regeneration.

Findings

It was found that the effect of build layer thickness was the most influential parameter with respect to physical and pore morphology features. Consequently, it is found that the energy density equation with the layer thickness parameter provides a better estimation of part porosity of composite structures than the energy density equation without the layer thickness parameter. However, further work needs to be conducted to overcome the existing error of variance.

Originality/value

This work is the first step in identifying the most significant SLS parameters and their effects on the porosity, micro and macro pore morphologies of the fabricated parts. This is an important step in the further development of implants which may be required.

Article
Publication date: 21 March 2016

Alkhair Almabrouk Mousa

This paper aims to investigate the curling behaviour of selective laser sintered polyamide/glass bead composites with changes in material compositions, part bed temperature…

Abstract

Purpose

This paper aims to investigate the curling behaviour of selective laser sintered polyamide/glass bead composites with changes in material compositions, part bed temperature, powder base thickness, laser power and layer cooling time.

Design/methodology/approach

The Taguchi parameter design method (design of experiments, DOE) and analysis of variance (ANOVA) technique were applied in the investigation to determine the optimal process parameter settings.

Findings

The results of statistical analysis and ANOVA provided evidence for the effectiveness of filler content and its surface treatment on reducing the amount of curling.

Research limitations/implications

Warping and curling phenomena is one of several aspects of this work that can be pursued further. The present investigation could be expanded to explore other fillers and interface adhesion using other modifiers. Experiments could be conducted with other complicated geometries, various sizes, different positions and locations to widen the knowledge base of geometric accuracy of selective laser sintering process.

Practical implications

This experimental work is beneficial for materials development and accuracy characterisation in rapid manufacturing techniques. The experimental techniques adopted are readily transferable to virtually any material system used in rapid manufacturing.

Originality/value

Although many materials have been developed, there is still a need for research into new materials. This work demonstrates that it is possible to improve the geometric accuracy of selective laser sintered components from glass bead- filled polyamide 12 and achieve near-zero curling by adding rigid multiphase-coated particle to the material system.

Details

Rapid Prototyping Journal, vol. 22 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 March 2023

Ryuichi Kobayashi and Ming Yang

Orange peel formation remains to be understood clearly because it is difficult to directly observe a laser-sintered process in a partcake. Therefore, this study aims to provide…

Abstract

Purpose

Orange peel formation remains to be understood clearly because it is difficult to directly observe a laser-sintered process in a partcake. Therefore, this study aims to provide insight into the orange peel formation mechanism through the nondestructive observation of laser-sintered specimens and their surrounding powders.

Design/methodology/approach

This study observed polyamide 12 powder in the vicinity of a laser-sintered specimen via X-ray computed tomography (CT) scanning. The specimen for nondestructive observation was 3D modeled in a hollow box using 3D CAD software. The boxes built using a laser-sintering system contained unsintered surrounding powder and sintered specimens. The box contents were preserved even after the boxes were removed from the partcake. After X-ray CT scanning, the authors broke the boxes and evaluated the unevenness formed on the specimen surface (i.e. the orange peel evaluation).

Findings

Voids (not those in sintered parts) generated in the powder in the vicinity of the specimen triggered the orange peel formation. Voids were less likely to form in the build with a 178.5° powder bed than in the build with a 173.5° powder bed. Similarly, the increment in laser energy density effectively suppressed void formation, although there was a tradeoff with overmelting. Thin-walled parts avoided void growth and made the orange peel less noticeable.

Originality/value

To the best of the authors’ knowledge, this study is the first to observe and understand the relationship between voids generated in the powder in the vicinity of sintered parts and orange peel formation.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 166