Search results

1 – 4 of 4
Article
Publication date: 18 January 2016

Mengqi Yuan and David Bourell

The purpose of this paper is to improve the quality of additive manufactured optically translucent parts by investigating the manufacturing issues, analyzing lithophane production…

Abstract

Purpose

The purpose of this paper is to improve the quality of additive manufactured optically translucent parts by investigating the manufacturing issues, analyzing lithophane production criteria and identifying the best translucent material and additive manufacturing (AM) technology.

Design/methodology/approach

Figured lithophanes were laser sintered on a 3D Systems SinterStation® HiQ™ with varying layer thickness and plate thickness. Laser sintered (LS) polyamide (PA) 12 blanks were cyanoacrylate infiltrated and polished. Optical properties and performance were compared with the original LS blanks. Lithophanes and blanks were manufactured using 3D systems stereo lithography apparatus (SLA)® Viper ™si2 station, and optical properties and lithophane performance were compared with the LS specimens.

Findings

When building in the XY plane, it is optimal to sinter with the minimum layer thickness (0.076 mm) and maximum plate thickness (5 mm). Cyanoacrylate infiltration and polishing assists in reducing the LS PA 12 plate surface roughness, but polishing does not affect the lithophane performance. The best LS candidate should have an absorption coefficient of 0.5/mm using a white light source. Improved resolution but reduced contrast was observed on stereolithography (SL) specimens compared to LS parts.

Research limitations/implications

Transmittance experiments were performed on three SL parts which was not sufficient for optical property calculation. Limited literature was found for new material exploration.

Originality/value

It is the first effort to study systematically quality improvement issues of LS PA optically translucent parts. A comparison is made of optical performance between parts made using LS and SL.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 January 2016

Mengqi Yuan and David Bourell

– This paper aims to analyze the additive manufacturing orientation effect of laser sintered polyamide 12 (PA 12) optically translucent parts.

Abstract

Purpose

This paper aims to analyze the additive manufacturing orientation effect of laser sintered polyamide 12 (PA 12) optically translucent parts.

Design/methodology/approach

Plates with small features, wedges and lithophanes were laser sintered on a SinterStation HiQ™ in different orientations using PA 12. Lithophane performance was assessed using a Picker 240050 X-ray view/light box. All parts were examined using stereomicroscopy to capture the small features.

Findings

The quality of the lithophane image was substantially improved by orienting the flat plate side to the incident backlit light. Sintering in the ZX/ZY plane significantly increased the contrast and resolution compared to sintering in the XY plane. The thinnest feature thickness possible in the SinterStation HiQ is in the XY plane 0.13 mm, and it is 0.57 mm when manufacturing in the ZX/ZY plane.

Research limitations/implications

The laser spot size and other machine parameters were not changeable, which limited the manufacturing resolution. Oblique, non-orthogonal orientations were not investigated.

Originality/value

This is a first effort to investigate the manufacturing orientation effect of laser sintered polyamide optically translucent parts. The manufacturing resolutions on different planes were defined.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 June 2015

Mengqi Yuan and David L. Bourell

The purpose of this paper is to report selected optical properties of laser sintered polyamide 12 blank plates under different monochromatic and white light conditions and to…

Abstract

Purpose

The purpose of this paper is to report selected optical properties of laser sintered polyamide 12 blank plates under different monochromatic and white light conditions and to apply these properties in production of laser sintered lithophanes.

Design/methodology/approach

A UNICO 1201E spectrophotometer was used to measure the transmittance of laser sintered polyamide 12 plates as a function of plate thickness. Monochromatic light-emitting diodes were used to assess the wavelength dependence on the transmission and contrast as captured by a SONY DSC-W55 camera.

Findings

The transmittance decreased with increasing plate thickness which varied significantly depending on the monochromatic wavelength. Highest transmission was observed using green light (525 nm) and poorest transmission was measured for yellow light (589 nm).

Research limitations/implications

There is a limit to the amount of contrast obtained in polyamide lithophanes because the thickness of the plates is limited to less than about 5 mm. Greater thickness results in discernible topology on the lithophane which impairs the quality of the image.

Originality/value

Light transmittance of polyamide 12 plates under different lighting conditions is reported and applied to optically defined laser sintered lithophanes.

Details

Rapid Prototyping Journal, vol. 21 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 September 2019

Swapnil Vyavahare, Soham Teraiya, Deepak Panghal and Shailendra Kumar

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211…

3700

Abstract

Purpose

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211 research papers published during the past 26 years, that is, from the year 1994 to 2019 are critically reviewed. Based on the literature review, research gaps are identified and the scope for future work is discussed.

Design/methodology/approach

Literature review in the domain of FDM is categorized into five sections – (i) process parameter optimization, (ii) environmental factors affecting the quality of printed parts, (iii) post-production finishing techniques to improve quality of parts, (iv) numerical simulation of process and (iv) recent advances in FDM. Summary of major research work in FDM is presented in tabular form.

Findings

Based on literature review, research gaps are identified and scope of future work in FDM along with roadmap is discussed.

Research limitations/implications

In the present paper, literature related to chemical, electric and magnetic properties of FDM parts made up of various filament feedstock materials is not reviewed.

Originality/value

This is a comprehensive literature review in the domain of FDM focused on identifying the direction for future work to enhance the acceptability of FDM printed parts in industries.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 4 of 4