Search results

1 – 10 of 495
Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1451

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2005

Michel Bellet, Olivier Jaouen and Isabelle Poitrault

The present paper addresses the computer modelling of pipe formation in metal castings.

1133

Abstract

Purpose

The present paper addresses the computer modelling of pipe formation in metal castings.

Design/methodology/approach

As a preliminary, a brief review of the current state‐of‐the‐art in pipe shrinkage computation is presented. Then, in first part, the constitutive equations that have to be considered in thermomechanical computations are presented, followed by the main lines of the mechanical finite element resolution. A detailed presentation of an original arbitrary Lagrangian‐Eulerian (ALE) formulation is given, explaining the connection between the Lagrangian and the quasi Eulerian zones, and the treatment of free surfaces.

Findings

Whereas most existing methods are based on thermal considerations only, it is demonstrated in the current paper that this typical evolution of the free surface, originated by shrinkage at solidification front and compensating feeding liquid flow, can be effectively approached by a thermomechanical finite element analysis.

Research limitations/implications

Future work should deal with the following points: identification of thermo‐physical and rheological data, automatic and adaptive mesh refinement, calculation of the coupled deformation of mold components, development of a two‐phase solid/liquid formulation.

Practical implications

An example of industrial application is given. The proposed method has been implemented in the commercial software THERCAST® dedicated to casting simulation.

Originality/value

The proposed numerical methods provide a comprehensive approach, capable of modelling concurrently all the main phenomena participating in pipe formation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 June 2016

Marko Bozic, Robert Fleischhauer and Michael Kaliske

The purpose of this paper is to investigate of interphasial effects, including temperature dependency, within fiber reinforced polymers on the overall composite behavior…

Abstract

Purpose

The purpose of this paper is to investigate of interphasial effects, including temperature dependency, within fiber reinforced polymers on the overall composite behavior. Providing theoretical and numerical approaches in terms of a consistent thermomechanical finite element method framework are further goals of this research.

Design/methodology/approach

Starting points for achieving the aims of this research are the partial differential equations describing the evolution of the displacements and temperature within a continuum mechanical setting. Based on the continuous formulation of a thermomechanical equilibrium, constitutive equations are derived, accounting for the modeling of fiber reinforced thermosets and thermoplastics, respectively. The numerical solutions of different initial boundary value problems are obtained by a consistent implementation of the proposed formulations into a finite element framework.

Findings

The successful theoretical formulation and numerical modeling of the thermoinelastic matrix materials as well as the thermomechanical treatment of the composite interphase (IP) are demonstrated for an epoxy/glass system. The influence of the IP on the overall composite behavior is successfully investigated and concluded as a further aspect.

Originality/value

A thermomechanical material model, suitable for finite thermoinelasticity of thermosets and thermoplastics is introduced and implemented into a novel kinematic framework in context of the inelastic deformation evolution. The gradually changing material properties between the matrix and the fiber of a composite are continuously formulated and numerically processed, in order to achieve an efficient and realistic approach to model fiber reinforced composites.

Article
Publication date: 1 April 2006

Jaroslav Mackerle

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can…

4734

Abstract

Purpose

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can help them to be up‐to‐date.

Design/methodology/approach

A range of published (1996‐2005) works, which aims to provide theoretical as well as practical information on the material processing namely bulk material forming. Bulk deformation processes used in practice change the shape of the workpiece by plastic deformations under forces applied by tools and dies.

Findings

Provides information about each source, indicating what can be found there. Listed references contain journal papers, conference proceedings and theses/dissertations on the subject.

Research limitations/implications

It is an exhaustive list of papers (1,693 references are listed) but some papers may be omitted. The emphasis is to present papers written in English language. Sheet material forming processes are not included.

Practical implications

A very useful source of information for theoretical and practical researchers in computational material forming as well as in academia or for those who have recently obtained a position in this field.

Originality/value

There are not many bibliographies published in this field of engineering. This paper offers help to experts and individuals interested in computational analyses and simulations of material forming processes.

Details

Engineering Computations, vol. 23 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 April 2012

Annapurna Addagarla and N. Siva Prasad

Out‐of‐plane displacement (warpage) is one of the major thermomechanical reliability concerns for board‐level electronic packaging. The warpage and residual stresses can cause…

Abstract

Purpose

Out‐of‐plane displacement (warpage) is one of the major thermomechanical reliability concerns for board‐level electronic packaging. The warpage and residual stresses can cause unreliability in the performance of electronic chip. An accurate estimation of the distortion and the residual stresses will help in selecting right combination of material for soldering and to determine the better assembly procedure of the chip. The purpose of this paper is to create a 3D nonlinear finite element model to predict the warpage, bending stresses, shear and peel stresses in a flip‐chip on board (FCOB).

Design/methodology/approach

A 3D finite element procedure has been developed considering the material nonlinearity during solidification for a FCOB assembly. Finite element results have been compared with the experimental values.

Findings

The present finite element method gives better approximation of residual warpage and stresses compared to analytical models available in the literature.

Originality/value

The 3D finite element approach considering the elasto‐plastic and temperature‐dependent material properties has not been attempted by any authors. Experiments have been conducted for the comparison of finite element values. The finite element results compare better than the methods available in the literature. Hence a better method for estimating the deformation and residual stresses in flip‐chip assembly has been suggested.

Details

Soldering & Surface Mount Technology, vol. 24 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4540

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2618

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 2005

Jaroslav Mackerle

Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or…

5146

Abstract

Purpose

Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or as welding and brazing fixtures, etc. Ceramic materials are frequently used in industries where a wear and chemical resistance are required criteria (seals, liners, grinding wheels, machining tools, etc.). Electrical, magnetic and optical properties of ceramic materials are important in electrical and electronic industries where these materials are used as sensors and actuators, integrated circuits, piezoelectric transducers, ultrasonic devices, microwave devices, magnetic tapes, and in other applications. A significant amount of literature is available on the finite element modelling (FEM) of ceramics and glass. This paper gives a listing of these published papers and is a continuation of the author's bibliography entitled “Finite element modelling of ceramics and glass” and published in Engineering Computations, Vol. 16, 1999, pp. 510‐71 for the period 1977‐1998.

Design/methodology/approach

The form of the paper is a bibliography. Listed references have been retrieved from the author's database, MAKEBASE. Also Compendex has been checked. The period is 1998‐2004.

Findings

Provides a listing of 1,432 references. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Originality/value

This paper makes it easy for professionals working with the numerical methods with applications to ceramics and glasses to be up‐to‐date in an effective way.

Details

Engineering Computations, vol. 22 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2002

Jaroslav Mackerle

Gives a bibliographical review of the finite element analyses of sandwich structures from the theoretical as well as practical points of view. Both isotropic and composite…

3450

Abstract

Gives a bibliographical review of the finite element analyses of sandwich structures from the theoretical as well as practical points of view. Both isotropic and composite materials are considered. Topics include: material and mechanical properties of sandwich structures; vibration, dynamic response and impact problems; heat transfer and thermomechanical responses; contact problems; fracture mechanics, fatigue and damage; stability problems; special finite elements developed for the analysis of sandwich structures; analysis of sandwich beams, plates, panels and shells; specific applications in various fields of engineering; other topics. The analysis of cellular solids is also included. The bibliography at the end of this paper contains 655 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1980 and 2001.

Details

Engineering Computations, vol. 19 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 August 2020

Ali Belhocine and Oday Ibraheem Abdullah

This study aims to investigate numerically a thermomechanical behavior of disc brake using ANSYS 11.0 which applies the finite element method (FEM) to solve the transient thermal…

Abstract

Purpose

This study aims to investigate numerically a thermomechanical behavior of disc brake using ANSYS 11.0 which applies the finite element method (FEM) to solve the transient thermal analysis and the static structural sequentially with the coupled method. Computational fluid dynamics analysis will help the authors in the calculation of the values of the heat transfer (h) that will be exploited in the transient evolution of the brake disc temperatures. Finally, the model resolution allows the authors to visualize other important results of this research such as the deformations and the Von Mises stress on the disc, as well as the contact pressure of the brake pads.

Design/methodology/approach

A transient finite element analysis (FEA) model was developed to calculate the temperature distribution of the brake rotor with respect to time. A steady-state CFD model was created to obtain convective heat transfer coefficients (HTC) that were used in the FE model. Because HTCs are dependent on temperature, it was necessary to couple the CFD and FEA solutions. A comparison was made between the temperature of full and ventilated brake disc showing the importance of cooling mode in the design of automobile discs.

Findings

These results are quite in good agreement with those found in reality in the brake discs in service and those that may be encountered before in literature research investigations of which these will be very useful for engineers and in the design field in the vehicle brake system industry. These are then compared to experimental results obtained from literatures that measured ventilated discs surface temperatures to validate the accuracy of the results from this simulation model.

Originality/value

The novelty of the work is the application of the FEM to solve the thermomechanical problem in which the results of this analysis are in accordance with the realized and in the current life of the braking phenomenon and in the brake discs in service thus with the thermal gradients and the phenomena of damage observed on used discs brake.

Details

World Journal of Engineering, vol. 17 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 495