Search results

1 – 10 of 360
Article
Publication date: 2 September 2024

Marko Delić, Vesna Mandić, Srbislav Aleksandrović, Dušan Arsić and Djordje Ivković

The impact of the application of hollow structures through variations of infill patterns and their density on the tensile properties was considered. The mechanical properties of…

Abstract

Purpose

The impact of the application of hollow structures through variations of infill patterns and their density on the tensile properties was considered. The mechanical properties of the parts have a significant influence on the behavior and reliability of the parts in exploitation.

Design/methodology/approach

In this paper, the mechanical properties of the additively manufactured ABS material were investigated depending on the FDM printing parameters, which relate both to process parameters such as printing velocity and layer thickness, but also to coupled influence with the change of specimen orientation, that is raster angle. A standard tensile test was applied so that the specimens were prepared according to the ASTM D638 standard.

Findings

The results of the conducted experimental research enable the identification of the optimal choice of printing parameters for additively produced ABS materials with the highest values of strain at break and tensile strength. The significance of the obtained results is reflected in the recommendations for the selection of appropriate combination of process parameters for additive manufacturing of ABS parts using FDM technology.

Originality/value

This paper evaluates influence of FDM printing parameters on the tensile strength of parts and therefore on the reliability of the parts.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 June 2024

Alperen Dogru and M. Ozgur Seydibeyoglu

This study aims to understand the effect of the use of different proportions and types of fibers in the polyamide 6 (PA6) matrix during material extrusion-based additive…

Abstract

Purpose

This study aims to understand the effect of the use of different proportions and types of fibers in the polyamide 6 (PA6) matrix during material extrusion-based additive manufacturing (MEX) and the effect of the manufacturing parameters on the mechanical properties. The mechanical, thermal and morphological properties of PA composites that are reinforced with carbon fiber (CF), glass fiber (GF) and as well as hybrid fiber (HF) were investigated.

Design/methodology/approach

In this study, the effect of nozzle temperature and layer thickness on the mechanical properties of composite samples was investigated in terms of their behavior under tensile, impact and compression loads, manufacturing parameters as well as fiber ratio and type. The results were also consolidated by scanning electron microscopy.

Findings

At 20 Wt.% CF reinforcement PA6 samples, a tensile strength value of 125 MPa was obtained with a 60% increase in tensile strength value compared to neatPA6. The HF-reinforced ones also measured a tensile strength value of 106.69 MPa. This corresponds to an increase of 38% compared to neatPA6. The results also show that HF reinforcement can be an important component for many composites and a suitable material for use under compression loading.

Originality/value

PA6, an engineering polymer, can be produced by MEX, which offers several advantages for complex geometries and customized designs. There are studies on different carbon and GF ratios in the PA6 matrix. Using these fibers together in a HF, the examination of their mechanical properties in the MEX method and the examination of the effect of GF reinforcement in the hybrid structure, which has a cost-reducing effect, has been an innovative approach. In this study, the results of the optimization of the parameters affecting the mechanical properties in the production of samples reinforced with different ratios and types of fibers in the PA6 matrix by the MEX method are presented.

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

982

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Article
Publication date: 3 September 2024

Osman Ulkir

The aim of this study is to investigate the printing parameters of fused deposition modeling (FDM), a material extrusion-based method, and to examine the mechanical and thermal…

Abstract

Purpose

The aim of this study is to investigate the printing parameters of fused deposition modeling (FDM), a material extrusion-based method, and to examine the mechanical and thermal properties of their polylactic acid (PLA) components reinforced with copper, bronze, and carbon fiber micro particles.

Design/methodology/approach

Tensile test samples were created by extruding composite filament materials using FDM-based 3D printer. Taguchi method was used to design experiments where layer thickness, infill density, and nozzle temperature were the printing variables. Analysis of variance (ANOVA) was applied to determine the effect of these variables on tensile strength.

Findings

The results of this study showed that the reinforcement of metal particles in PLA material reduces strength and increases elongation. The highest tensile strength was obtained when the layer thickness, infill density, and nozzle temperature were set to 100 µm, 60%, and 230 °C, respectively. As a result of thermal analysis, cooper-PLA showed the highest thermal resistance among metal-based PLA samples.

Originality/value

It is very important to examine the mechanical and thermal quality of parts fabricated in FDM with metal-PLA composites. In the literature, the mechanical properties of metal-reinforced composite PLA parts have been examined using different factors and levels. However, the fabrication of parts using the FDM method with four different metal-added PLA materials has not been examined before. Another unique aspect of the study is that both mechanical and thermal properties of composite materials will be examined.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 August 2024

Mustafa Kuntoğlu, Emin Salur, Munish Kumar Gupta, Saad Waqar, Natalia Szczotkarz, Govind Vashishtha, Mehmet Erdi Korkmaz and Grzegorz M. Krolczyk

The nickel-based alloys Inconel 625 and Inconel 718 stand out due to their high strength and corrosion resistance in important industries like aerospace, aviation and automotive…

Abstract

Purpose

The nickel-based alloys Inconel 625 and Inconel 718 stand out due to their high strength and corrosion resistance in important industries like aerospace, aviation and automotive. Even though they are widely used, current techniques of producing materials that are difficult to cut pose several problems from a financial, ecological and even health perspective. To handle these problems and acquire improved mechanical and structural qualities, laser powder bed fusion (LPBF) has been widely used as one of the most essential additive manufacturing techniques. The purpose of this article is to focus on the state of the art on LPBF parts of Inconel 625 and Inconel 718 for microstructure, mechanical behavior and postprocessing.

Design/methodology/approach

The mechanical behavior of LPBF-fabricated Inconel is described, including hardness, surface morphology and wear, as well as the influence of fabrication orientation on surface quality, biocompatibility and resultant mechanical properties, particularly tensile strength, fatigue performance and tribological behaviors.

Findings

The postprocessing techniques such as thermal treatments, polishing techniques for surface enhancement, mechanical and laser-induced peening and physical operations are summarized.

Originality/value

The highlighted topic presents the critical aspects of the advantages and challenges of the LPBF parts produced by Inconel 718 and 625, which can be a guideline for manufacturers and academia in practical applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 April 2024

Vidyut Raghu Viswanath, Shivashankar Hiremath and Dundesh S. Chiniwar

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings…

Abstract

Purpose

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings, such as raster angle, infill and orientation to improve the 3D component qualities while fabricating the sample using a 3D printer. However, the influence of these factors on the characteristics of the 3D parts has not been well explored. Owing to the effect of the different print parameters in fused deposition modeling (FDM) technology, it is necessary to evaluate the strength of the parts manufactured using 3D printing technology.

Design/methodology/approach

In this study, the effect of three print parameters − raster angle, build orientation and infill − on the tensile characteristics of 3D-printed components made of three distinct materials − acrylonitrile styrene acrylate (ASA), polycarbonate ABS (PC-ABS) and ULTEM-9085 − was investigated. A variety of test items were created using a commercially accessible 3D printer in various configurations, including raster angle (0°, 45°), (0°, 90°), (45°, −45°), (45°, 90°), infill density (solid, sparse, sparse double dense) and orientation (flat, on-edge).

Findings

The outcome shows that variations in tensile strength and force are brought on by the effects of various printing conditions. In all possible combinations of the print settings, ULTEM 9085 material has a higher tensile strength than ASA and PC-ABS materials. ULTEM 9085 material’s on-edge orientation, sparse infill, and raster angle of (0°, −45°) resulted in the greatest overall tensile strength of 73.72 MPa. The highest load-bearing strength of ULTEM material was attained with the same procedure, measuring at 2,932 N. The tensile strength of the materials is higher in the on-edge orientation than in the flat orientation. The tensile strength of all three materials is highest for solid infill with a flat orientation and a raster angle of (45°, −45°). All three materials show higher tensile strength with a raster angle of (45°, −45°) compared to other angles. The sparse double-dense material promotes stronger tensile properties than sparse infill. Thus, the strength of additive components is influenced by the combination of selected print parameters. As a result, these factors interact with one another to produce a high-quality product.

Originality/value

The outcomes of this study can serve as a reference point for researchers, manufacturers and users of 3D-printed polymer material (PC-ABS, ASA, ULTEM 9085) components seeking to optimize FDM printing parameters for tensile strength and/or identify materials suitable for intended tensile characteristics.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 July 2024

Heba Raslan, Khaled El-Nemr, Magdy Ali and Medhat Hassan

This study aims to investigate the influences of polyester fabric layers on the mechanical properties of SBR and devulcanized waste rubber composite materials, as well as the…

Abstract

Purpose

This study aims to investigate the influences of polyester fabric layers on the mechanical properties of SBR and devulcanized waste rubber composite materials, as well as the effect of gamma irradiation dose.

Design/methodology/approach

The devulcanized waste rubbers (DWR) were carried out by different methods. First, chemically, by two different reclaiming agents such as tetramethylthiuram disulfide (TMTD) and 2-mercapto benzothiazole disulfide (MBTS). Secondary by a physical method like microwave (MW). The devulcanized rubbers were mixed with virgin styrene butadiene rubber (SBR) in different ratios, as follows: SBR-DWR (TMTD) 50 / 50, SBR-DWR (MBTS) 80 / 20 and SBR-DWR (MW) 80 / 20. A series of sandwich polyester tire cord fabrics were used as reinforcement for making SBR and devulcanized waste rubber composite materials and molded on a hot press into rubber sheet films, then subjected to gamma radiation at different doses ranging from 100 up to 200 kGy.

Findings

The experimental results indicate that increasing the layer number improves the mechanical properties of composites. The tensile strength, tearing, hardness and elastic modulus of the rubber composites increased with the rise of the fiber layers and by increasing the irradiation dose up to 200 kGy. The reclaiming agent TMTD gave the best results for mechanical properties, followed by MW and then MBTS.

Originality/value

This phenomenon can be detailed based on the fact that when the fiber-reinforced composites are subjected to loading, the fibers act as load carriers, depending on the population and orientation of the fibers. Also, scanning electron microscopy (SEM) reveals that adhesion was caused by tire cord fabrics and rubber blend matrix.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 September 2024

Indrajeet Katti, Alistair Jones, Matthias Weiss, Dong Qiu, Joy H. Forsmark and Mark Easton

Powder bed fusion-laser beam (PBF-LB) is a rapidly growing manufacturing technology for producing Al-Si alloys. This technology can be used to produce high-pressure die-casting…

Abstract

Purpose

Powder bed fusion-laser beam (PBF-LB) is a rapidly growing manufacturing technology for producing Al-Si alloys. This technology can be used to produce high-pressure die-casting (HPDC) prototypes. The purpose of this paper is to understand the similarities and differences in the microstructures and properties of PBF-LB and HPDC alloys.

Design/methodology/approach

PBF-LB AlSi10Mg and HPDC AlSi10Mn plates with different thicknesses were manufactured. Iso-thermal heat treatment was conducted on PBF-LB bending plates. A detailed meso-micro-nanostructure analysis was performed. Tensile, bending and microhardness tests were conducted on both alloys.

Findings

The PBF-LB skin was highly textured and softer than its core, opposite to what is observed in the HPDC alloy. Increasing sample thickness increased the bulk strength for the PBF-LB alloy, contrasting with the decrease for the HPDC alloy. In addition, the tolerance to fracture initiation during bending deformation is greater for the HPDC material, probably due to its stronger skin region.

Practical implications

This knowledge is crucial to understand how geometry of parts may affect the properties of PBF-LB components. In particular, understanding the role of geometry is important when using PBF-LB as a HPDC prototype.

Originality/value

This is the first comprehensive meso-micro-nanostructure comparison of both PBF-LB and HPDC alloys from the millimetre to nanometre scale reported to date that also considers variations in the skin versus core microstructure and mechanical properties.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 May 2024

Ch Kapil Ror, Vishal Mishra, Sushant Negi and Vinyas M.

This study aims to evaluate the potential of using the in-nozzle impregnation approach to reuse recycled PET (RPET) to develop continuous banana fiber (CBF) reinforced…

Abstract

Purpose

This study aims to evaluate the potential of using the in-nozzle impregnation approach to reuse recycled PET (RPET) to develop continuous banana fiber (CBF) reinforced bio-composites. The mechanical properties and fracture morphology behavior are evaluated to establish the relationships between layer spacing–microstructural characteristics–mechanical properties of CBF/RPET composite.

Design/methodology/approach

This study uses RPET filament developed from post-consumer PET bottles and CBF extracted from agricultural waste banana sap. RPET serves as the matrix material, while CBF acts as the reinforcement. The test specimens were fabricated using a customized fused deposition modeling 3D printer. In this process, customized 3D printer heads were used, which have a unique capability to extrude and deposit print fibers consisting of a CBF core coated with an RPET matrix. The tensile and flexural samples were 3D printed at varying layer spacing.

Findings

The Young’s modulus (E), yield strength (sy) and ultimate tensile strength of the CBF/RPET sample fabricated with 0.7 mm layer spacing are 1.9 times, 1.25 times and 1.8 times greater than neat RPET, respectively. Similarly, the flexural test results showed that the flexural strength of the CBF/RPET sample fabricated at 0.6 mm layer spacing was 47.52 ± 2.00 MPa, which was far greater than the flexural strength of the neat RPET sample (25.12 ± 1.94 MPa).

Social implications

This study holds significant social implications highlighting the growing environmental sustainability and plastic waste recycling concerns. The use of recycled PET material to develop 3D-printed sustainable structures may reduce resource consumption and encourages responsible production practices.

Originality/value

The key innovation lies in the concept of in-nozzle impregnation approach, where RPET is reinforced with CBF to develop a sustainable composite structure. CBF reinforcement has made RPET a superior, sustainable, environmentally friendly material that can reduce the reliance on virgin plastic material for 3D printing.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 August 2024

Abdurrahim Temiz

This study aims to examine the impact of specific printing factors, such as layer height, line width and build orientation, on the overall quality of fused filament fabrication…

Abstract

Purpose

This study aims to examine the impact of specific printing factors, such as layer height, line width and build orientation, on the overall quality of fused filament fabrication (FFF) 3D printed structures. The project also intends to use response surface methodology (RSM) to maximize ultimate tensile strength (UTS) while lowering surface roughness and printing time.

Design/methodology/approach

This study used an FFF printer to fabricate samples of polylactic acid (PLA), which were then subjected to assessments of tensile strength and surface roughness. A tensile test was conducted under standardized conditions according to the ASTM D638 standard test method using the AG-50 kN Shimadzu Autograph. The Mitutoyo Surftest SJ-210, which utilizes a needle-tipped inductive method, was used to determine surface roughness. RSM was used for optimization.

Findings

This work provides useful insights into how the printing parameters affect FFF 3D printed structures, which may be used to optimize the printing process and improve PLA-based 3D printed products' qualities. The determined optimal values for building orientation, layer height and line width were 0°, 0.1 mm and 0.6 mm, respectively. The total desirability value of 0.80 implies desirable outcomes, and good agreement between experimental and projected response values supports the suggested models.

Originality/value

Previous RSM studies for 3D printing parameter optimization focused on mechanical properties or surface aspects, however, few examined multiple responses and their interactions. This study emphasizes the relevance of FFF parameters like line width, which are often overlooked but can dramatically impact printing quality. Mechanical properties, surface quality and printing time are integrated to comprehend optimization holistically.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 360