Search results

1 – 10 of 144
Article
Publication date: 13 August 2024

Sofien Benltoufa, Hind Algamdy, Adel Ghith, Faten Fayala and Lubos Hes

The paper aims to investigate the dynamic measurement of the water vapour resistance. The water vapour diffusion kinetics depends on the fibre’s material. So, water vapour…

Abstract

Purpose

The paper aims to investigate the dynamic measurement of the water vapour resistance. The water vapour diffusion kinetics depends on the fibre’s material. So, water vapour resistance measurement times till the equilibrium steady state can vary in the case of natural fibres compared to synthetic fibres. Devices for determining water vapour resistance according to the ISO 11092 standard allow static values to be measured.

Design/methodology/approach

In this study to investigate the dynamic of the water vapour resistance, a new parameter named “holding period” was introduced and defined as the time from sample placement on the measuring head until the measuring process begins. The holding period was varied as 0, 30, 60, 90, 120, 180, 240 and 300 s. Wool and cotton knitted fabrics were tested as natural fibres and compared to 100% polyester and 90% polyester/10% elastane as synthetic fibres. Measurements were conducted under both air velocities of 1 and 2 m/s. The experimental test data were statistically analysed based on ANOVA and four-in-one residual plots.

Findings

Statistical analysis of experimental tests shows that the holding period affects water vapour resistance in both air velocities of 1 and 2 m/s and on the measured values in the case of hydrophilic fibres.

Research limitations/implications

The study of the dynamic relative water vapour permeability of natural and synthetic is an important area of interest for future research.

Practical implications

It is recommended to hold the samples on the top of the head measurement before starting the test.

Originality/value

Following the ISO 11092 standard, the static values of the water vapour resistance were measured without considering the dynamic behaviour of the water vapour diffusion through the textile fabrics. This paper fulfils an experimental dynamic measurement of the water vapour resistance.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 May 2024

Haruna Ibrahim, George Wardeh, Hanaa Fares and Elhem Ghorbel

The main aim of the current study is to investigate the effect of Anti-Crack HP 67/36 glass fibre on the mechanical performance of mortars made of cement, with a focus on…

Abstract

Purpose

The main aim of the current study is to investigate the effect of Anti-Crack HP 67/36 glass fibre on the mechanical performance of mortars made of cement, with a focus on post-cracking evaluations using the digital image correlation (DIC) technique.

Design/methodology/approach

Experimental tests were carried out on 36-mm long fibres at 0.8% by volume and added to the normal strength (NSM), high strength (HSM) and high strength mortar with fly ash (HSMFA) mortars. CEM I 52.5 CP2 NF, CEM II/A-L 42.5 NF and CEM III/C 32.5 N-SR PM were used for each series of mortar to assess the performance of the glass fibres with the types of cement. F-class fly (FA) ash was used to reduce global CO2 emissions.

Findings

The mortar’s strength decreased as the cement types changed from CEM I to CEM II and III. However, due to changes in the portlandite content of the cement, water porosity increased for both types of mortar, without and with fibre. It was also found that using glass fibre increased flexural strength more than compressive strength, regardless of the type of cement used. For all the strength classes, it was found that the mortar mixes with CEM I had the highest critical crack opening (wc) and fracture energy (GF), followed by CEM II and III. No significant effects were observed in the mortar’s property by replacing fly ash (12%).

Research limitations/implications

Only mortars were formulated in this study, but the results must be verified at the concrete scale.

Practical implications

Validation of the DIC technique to characterize the post-cracking behaviour of cement-based material. Use of glass fibres to improve the material’s resistance to cracking.

Social implications

Use of CEM II and CEM III cements with low CO2 footprint instead of CEMI without altering the mechanical performance of the material.

Originality/value

The work is a further contribution to studying the cracking behaviour of several series of variable mortars depending on the resistance class and the type of cement used.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 24 May 2023

Vijaya Prasad Burle, Tattukolla Kiran, N. Anand, Diana Andrushia and Khalifa Al-Jabri

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete…

Abstract

Purpose

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete (FGC) was developed with 8 and 10 molarities (M). At elevated temperatures, concrete experiences deterioration of its mechanical properties which is in some cases associated with spalling, leading to the building collapse.

Design/methodology/approach

In this study, six geopolymer-based mix proportions are prepared with crimped steel fibre (SF), polypropylene fibre (PF), basalt fibre (BF), a hybrid mixture consisting of (SF + PF), a hybrid mixture with (SF + BF), and a reference specimen (without fibres). After temperature exposure, ultrasonic pulse velocity, physical characteristics of damaged concrete, loss of compressive strength (CS), split tensile strength (TS), and flexural strength (FS) of concrete are assessed. A polynomial relationship is developed between residual strength properties of concrete, and it showed a good agreement.

Findings

The test results concluded that concrete with BF showed a lower loss in CS after 925 °C (i.e. 60 min of heating) temperature exposure. In the case of TS, and FS, the concrete with SF had lesser loss in strength. After 986 °C and 1029 °C exposure, concrete with the hybrid combination (SF + BF) showed lower strength deterioration in CS, TS, and FS as compared to concrete with PF and SF + PF. The rate of reduction in strength is similar to that of GC-BF in CS, GC-SF in TS and FS.

Originality/value

Performance evaluation under fire exposure is necessary for FGC. In this study, we provided the mechanical behaviour and physical properties of SF, PF, and BF-based geopolymer concrete exposed to high temperatures, which were evaluated according to ISO standards. In addition, micro-structural behaviour and linear polynomials are observed.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 January 2024

Amanpreet Kaur Kharbanda, Kamal Raj Dasarathan, S.K. Sinha, T. Senthil Kumar and B. Senthil Kumar

Through this study, four different types of woven fabric structures were created by using cotton/banana blends with a 70:30 ratio by varying the weaving specifications. This study…

84

Abstract

Purpose

Through this study, four different types of woven fabric structures were created by using cotton/banana blends with a 70:30 ratio by varying the weaving specifications. This study aims to investigate the comfort and mechanical properties of these woven materials.

Design/methodology/approach

Taguchi L16 experimental design (5 factors and 4 levels) with response surface methodology tool was used to optimize mechanical and comfort characteristics. The yarn samples used in this study are cotton/banana with a blend ratio of 70:30. Fabric type (A), grams per square metre (GSM; B), yarn count (C), fabric thickness (D) and cloth cover factor (E) are the chosen process characteristics.

Findings

The highest tensile strength and tearing strength of the cotton/banana blended fabric samples were obtained as 326.3 N and 90.3 k.gf/cm, respectively. Similarly, the highest thermal conductivity and overall moisture management capacity values were found to be 0.6628 and 3.06 W/mK X10−4, respectively. The optimized process parameters for obtaining maximum mechanical properties were using canvas fabric structure, 182 GSM, 36s Ne yarn count, 0.48 mm fabric thickness and 23.5 cloth cover factor. Similarly, the optimized process parameters for obtaining maximum comfort properties were achieved using a twill fabric structure, 182 GSM, 32s Ne yarn count, 0.4 mm fabric thickness and 23 cloth cover factor.

Originality/value

In contrast to synthetic fabrics, banana fibre and its blended materials are significant ecological solutions for apparel and functional clothing. Products made from banana fibre are a sustainable and green alternative to conventional fabrics. Banana fibre obtained from the pseudostem of the plant has an appearance similar to ramie and bamboo fibres. Numerous studies showed that banana fibre could absorb significant moisture and be spun into yarn through ring and rotor spinning technology. On the other hand, this fibre can be easily combined with cotton, jute, wool and synthetic fibre. The present utilization of pseudostem of banana plant fibre is very minimal. This type of research improves the usability of bananas their blended fabrics as apparel and functional wear.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 20 September 2024

Liberato Venant Haule

A review of sustainability challenges of flame retardants (FRs) for textiles has been conducted. Specifically, the purpose of this paper is to identify and recommend solutions to…

Abstract

Purpose

A review of sustainability challenges of flame retardants (FRs) for textiles has been conducted. Specifically, the purpose of this paper is to identify and recommend solutions to sustainability challenges emanating from the raw material, processing technology and performance of the FRs used for textiles.

Design/methodology/approach

The approach used in preparing this paper was based on the review of various scholarly databases about the subject matter. The review approach is designed to inform the readers about the sustainability challenges of FRs for textiles. The science of burning and FRs for synthetic and cellulosic fibres were reviewed. Both synthetic and natural biodegradable FRs for textiles has been identified. The obtained literature was then synthesised to get information about sustainable challenges of non-halogenated FRs both synthetic and natural biodegradable. Finally, possible approaches for mitigating the identified challenges have been recommended.

Findings

The sustainability challenges of the FRs in terms of raw material, processing, affordability and performance have been identified. Synthetic FRs suffer from sustainability challenges in terms of raw materials, processing and non-renewability. Despite the environmental friendliness and sustainability in terms of being renewability, processability and biodegradability, natural biodegradable FRs have poor performance compared to synthetic ones. Moreover, natural biodegradable FRs depend on geographical condition and lack economic variability data. Potentially, the challenges of FRs can be mitigated through eco-friendly synthesis, chemical modification and sustainable methods of applications. Because of its renewability and environmental friendliness, biodegradable FRs have a potential to becoming sustainable if researched more.

Originality/value

In this review, a collection of literature about sustainability challenges of FRs and the approaches to overcome the challenges has been provided. The collected information was analysed and synthesised to bring understanding of the science of burning, types and application of FRs for textiles and biodegradable FRs. Sustainability challenges have been identified, and mitigation approaches are provided.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 4 January 2024

Ernest Mbamalu Ezeh, Ezeamaku U Luvia and Onukwuli O D

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has…

Abstract

Purpose

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has gained popularity in recent years due to their various advantages, including renewability, low cost, low density and biodegradability. Gourd fibre is one such natural fibre that has been identified as a potential reinforcement material for composites. However, it has low surface energy and hydrophobic nature, which makes it difficult to bond with matrix materials such as polyester. To overcome this problem, chemically adapted gourd fibre has been proposed as a solution. Chemical treatment is one of the most widely used methods to improve the properties of natural fibres. This research evaluates the feasibility and effectiveness of incorporating chemically adapted gourd fibre into polyester composites for industrial fabrication. The purpose of this study is to examine the application of chemically modified GF in the production of polyester composite engineering materials.

Design/methodology/approach

This work aims to evaluate the effectiveness of chemically adapted gourd fibre in improving the adhesion of gourd fibre with polyester resin in composite fabrication by varying the GF from 5 to 20 wt.%. The study involves the preparation of chemically treated gourd fibre through surface modification using sodium hydroxide (NaOH), permanganate (KMnO4) and acetic acid (CH3COOH) coupling agents. The mechanical properties of the modified fibre and composites were investigated. It was then characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to determine the changes in surface morphology and functional groups.

Findings

FTIR characterization showed that NaOH treatment caused cellulose depolymerization and caused a significant increase in the hydroxyl and carboxyl groups, showing improved surface functional groups; KMnO4 treatment oxidized the fibre surface and caused the formation of surface oxide groups; and acetic acid treatment induced changes that primarily affected the ester and hydroxyl groups. SEM study showed that NaOH treatment changed the surface morphology of the gourd fibre, introduced voids and reduced hydrophilic tendencies. The tensile strength of the modified gourd fibres increased progressively as the concentration of the modification chemicals increased compared to the untreated fibres.

Originality/value

This work presents the designed composite with density, mechanical properties and microstructure, showing remarkable improvements in the engineering properties. An 181.5% improvement in tensile strength and a 56.63% increase in flexural strength were got over that of the unreinforced polyester. The findings from this work will contribute to the understanding of the potential of chemically adapted gourd fibre as a reinforcement material for composites and provide insights into the development of sustainable composite materials.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 July 2023

Fabienne Touchard, Damien Marchand, Laurence Chocinski-Arnault, Teddy Fournier and Christophe Magro

Additive manufacturing is a recent technology used in the production of composite materials. The use of continuous fibres as reinforcement is necessary to achieve high mechanical…

Abstract

Purpose

Additive manufacturing is a recent technology used in the production of composite materials. The use of continuous fibres as reinforcement is necessary to achieve high mechanical performance. However, making these materials more environmentally friendly is still challenging. The purpose of this study was to investigate the feasibility of 3D printing a composite made of continuous regenerated cellulose fibres using a standard 3D printer generally used for printing polymers.

Design/methodology/approach

The production process was based on a pre-impregnated filament made from a tape containing continuous cellulose fibres and Pebax® matrix. 3D printed composite samples were fabricated using fused deposition modelling. The tape, filament and 3D printed composites were first analysed by means of modulated differential scanning calorimetry and micrography. Tensile tests were then performed, and the mechanical characteristics were determined at each step of the production process. Fracture surfaces were investigated by field-emission gun–scanning electron microscopy.

Findings

Results showed that the mechanical behaviour of the material was maintained throughout the production process, and the 3D printed biocomposites had a stiffness equivalent to that of traditionally manufactured continuous cellulose fibre composites. The obtained 3D printed composites showed an increase in strength value by a factor of 4 and in tensile modulus by a factor of 20 compared to those of unreinforced Pebax® polymer.

Originality/value

This paper demonstrates the feasibility of 3D printing composites based on continuous cellulose fibres, paving the way for new biocomposites made by additive manufacturing.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 March 2022

Geetha Margret Soundri, Kavitha S. and Senthil Kumar B.

The essential properties of active sports fabrics are moisture management, quick-drying, body heat management and thermal regulations. Fibre type, blending nature, yarn and fabric…

Abstract

Purpose

The essential properties of active sports fabrics are moisture management, quick-drying, body heat management and thermal regulations. Fibre type, blending nature, yarn and fabric structure and the finishing treatment are the key parameters that influenced the performance of the clothing meant for sportswear. This study aims to investigate the effect of fibre blending and structural tightness factors on bi-layer sport fabric's dimensional, moisture management and thermal properties.

Design/methodology/approach

In this study, 12 different bi-layer inter-lock fabrics were produced. Polyester filament (120 Denier) yarn was fed to form the backside of the fabric, and the face side was varied with cotton, modal, wool and soya spun yarns of 30sNe. Three different types of structural tightness factors were considered, such as low, medium and high were taken for sample development. The assessment towards dimensional, moisture management and thermal properties was carried out on all the samples.

Findings

The polyester-modal blend with a high tightness factor has shown maximum overall moisture management capability (OMMC) values of 0.73 and air permeability of 205.3 cm3/cm2/s. The same sample has shown comparatively higher thermal conductivity of 61.72 × 10–3 W m-1 °C-1(Under compression state) and 58.45 × 10–3 W m-1 °C-1 (under recovery state). In the case of surface roughness is concerned, polyester-modal blends have shown the lowest surface roughness, surface roughness amplitude and surface friction co-efficient. Among the selected fibre combinations, the overall comfort level of polyester-modal bi-layer knitted structure with a higher tightness factor is appreciable. Polyester-modal is more suitable for active sportswear among the four fiber blend combinations.

Research limitations/implications

The outcome of this study will help to gain a better understanding of fibre blends, structural tightness factor and other process specifications for the development of bi-layer fabric for active sportswear applications. The dynamic functional testing methods (Moisture management and Thermal properties) were carried out to simulate the actual wearing environment of the sports clothing. This study will create a new scope of research opportunities in the field of bi-layer sports textiles.

Originality/value

This study was conducted to explore the influence of fibre blend and structural tightness factor on the comfort level of sportswear and to find the suitable fibre blend for active sportswear clothing.

Details

Research Journal of Textile and Apparel, vol. 27 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 29 September 2023

Lutamyo Nambela

The purpose of this study was to review the information on the scientific efforts and achievements in sustainable industrial textile applications of natural colourants. Then the…

Abstract

Purpose

The purpose of this study was to review the information on the scientific efforts and achievements in sustainable industrial textile applications of natural colourants. Then the paper suggests the ways of improving the industrial textile applications of plant-based colourants.

Design/methodology/approach

The literature on the chemistry, sources and extraction of plant-based natural colourants was reviewed. The reviewed information was analysed and synthesised to provide techniques for selecting sustainable extraction methods, possible sustainable textile applications of natural colourants and the challenges which hinder industrial textile applications of plant-based natural colourants. The ways of overcoming the challenges of the industrial textile applications of plant natural colourants were suggested. Lastly, the current situation of industrial application of natural dyes in textiles is presented.

Findings

Despite the scientific achievement to overcome the challenges of natural colourants for textiles, the global industrial application of natural colourants is still low. Inadequate knowledge of the dyers results into poor performance of the natural dyed textile. The natural dyed textiles are expensive due to the scarcity of raw materials for manufacturing of natural colourants. The selection of suitable extraction, application methods and type of substrate should consider the chemistry of the particular colourant. The society should be educated about the benefits of natural dyed textiles. Cultivation of colourant-bearing plants should be promoted to meet the industrial material demand.

Originality/value

The paper provides a synthesized collection of information about the source, chemistry, extraction, textile application and challenges of plant-based natural colourants. The reviewed information was analysed and synthesised to provide techniques for selecting sustainable extraction methods, possible sustainable textile applications of natural colourants and the challenges which hinder industrial textile applications of plant-based natural colourants. The ways of overcoming the challenges of the industrial textile applications of plant natural colourants were suggested.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 14 May 2024

Gizem Karakan Günaydın, Erhan Kenan Çeven and Nejla Çeven

The paper aims to provide an investigation about the effect of weft yarn type on thermal comfort and air permeability properties of Lyocell blended drapery fabrics.

Abstract

Purpose

The paper aims to provide an investigation about the effect of weft yarn type on thermal comfort and air permeability properties of Lyocell blended drapery fabrics.

Design/methodology/approach

The paper evaluates the effect of weft yarn type on thermal comfort and air permeability properties of Lyocell blended drapery fabrics. Twill drapery fabrics with 18 Tex linen warp yarn where two types of weft yarns were utilized respectively with the order of “A” yarn and “B” yarn. 58 Tex Lyocell Linen blended first weft yarn (A yarn) was kept constant and the second weft yarn (B yarn) varied in different yarn structures and yarn count. Thermal comfort properties such as thermal conductivity, thermal resistivity, thermal absorptivity, fabric thickness were measured by means of Alambeta device. Correlation matrix between the thermal properties was also displayed. Air permeability results were obtained by using SDL Atlas Digital Air Permeability Tester Model M 021 A. One way analysis of variance (ANOVA) test was performed in order to investigate the effect of weft yarn type on thermal comfort and air permeability properties of Lyocell blended drapery fabrics.

Findings

In this paper, weft yarn type was found as a significant factor on some of the thermal comfort properties such as thermal conductivity, thermal resistivity, thermal absorptivity, fabric thickness and on the air permeability properties.

Originality/value

There are limited works related to evaluation of some thermal comfort and air permeability properties of Lyocell blended drapery fabrics.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 144