Search results

1 – 10 of 339
Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 January 2017

Nagarajan V.S., Balaji Mahadevan, Kamaraj V., Arumugam R., Ganesh Nagarajan, Srivignesh S. and Suudharshana M.

The purpose of this paper is performance enhancement of ferrite-assisted synchronous reluctance (FASR) motor using multi-objective differential evolution (MODE) algorithm…

Abstract

Purpose

The purpose of this paper is performance enhancement of ferrite-assisted synchronous reluctance (FASR) motor using multi-objective differential evolution (MODE) algorithm, considering the significant geometric design parameters.

Design/methodology/approach

This work illustrates the optimization of FASR motor using MODE algorithm to enhance the performance of the motor considering barrier angular positions, magnet height, magnet axial length, flux barrier angles of the rotor and air gap length. In the optimization routine to determine the performance parameters, generalized regression neural network-based interpolation is used. The results of MODE are validated with multi-objective particle swarm optimization algorithm and multi-objective genetic algorithm.

Findings

The design optimization procedure developed in this work for FASR motor aims at achieving multiple objectives, namely, average torque, torque ripple and efficiency. With multiple objectives, it is essential to give the designer the tradeoff between different objectives so as to arrive at the best design suitable for the application. The results obtained in this work justify the application of the MODE approach for FASR motor to determine the various feasible solutions within the bounds of the design.

Research limitations/implications

Analysis, design and optimization of synchronous reluctance motor has been explored in detail to establish its potential for variable speed applications. In recent years, the focus is toward the electromagnetic design of hybrid configurations such as FASR motor. It is in this preview this work aims to achieve optimal design of FASR motor using multi-objective optimization approach.

Practical/implications

The results of this work will supplement and encourage the application of FASR motor as a viable alternate for variable speed drive applications. In addition, the application of MODE to arrive at better design solutions is demonstrated.

Originality/value

The approach presented in this work focuses on obtaining enhanced design of FASR motor considering average torque, torque ripple and efficiency as performance measures. The posteriori analysis of optimization provides an insight into the choice of parameters involved and their effects on the design of FASR motor. The efficacy of the optimization routine is justified in comparison with other multi-objective algorithms.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2015

Nicola Bianchi, Luigi Alberti and Omar Bottesi

The purpose of this paper is to compare different types of electric motor drives for high-efficiency applications: an induction motor (IM) drive, a synchronous reluctance motor

Abstract

Purpose

The purpose of this paper is to compare different types of electric motor drives for high-efficiency applications: an induction motor (IM) drive, a synchronous reluctance motor drive and a permanent magnet-assisted synchronous reluctance motor drive. An innovative field-oriented analysis technique is applied to estimate the performance of the IM drive. This method of analysis is particularly advantageous in comparing the IM performance to those of synchronous machines.

Design/methodology/approach

The comparison among the capabilities of the three electric drives is carried out combining both analytical and finite element methods.

Findings

From the analysis, it results that the REL motor exhibits higher torque density than IM, but lower losses since there are no Joule losses in the rotor. On the contrary, the REL motor exhibits a very power factor, which corresponds to a high-volt-ampere ratings of the inverter that supplies the motor itself.

Originality/value

A new analysis technique is adopted to investigate and compare the energy efficiency performance of different machines.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 May 2023

Rajini V., Jassem M., Nagarajan V.S., Sreeya Galla N.V. Sai and Jeyapradha Rb

Industrial drives require appropriate control systems for reliable and efficient performance. With synchronous reluctance machines (SynRMs) slowly replacing the most commonly used…

Abstract

Purpose

Industrial drives require appropriate control systems for reliable and efficient performance. With synchronous reluctance machines (SynRMs) slowly replacing the most commonly used induction, switched reluctance and permanent magnet machines, it is essential that the drive and its control be properly selected for enhanced performance. But the major drawback of synchronous reluctance motor is the presence of high torque ripple as its design is characterized by large number of variables. The solutions to reduce torque ripple include design modifications, choice of proper power electronic inverter and PWM strategy. But little has been explored about the power electronic inverters suited for synchronous reluctance motor drive to minimize torque ripple inherently by obtaining a more sinusoidal voltage. The purpose of this paper is to elaborate on the potential multilevel inverter topologies applicable to SynRM drives used in solar pumping applications.

Design/methodology/approach

The most significant field-oriented control using maximum torque per ampere algorithm for maximizing the torque production is used for the control of SynRM. Simulation results carried out using Matlab/Simulink are presented to justify the choice of inverter and its control technique for SynRM.

Findings

The five-level inverter drive gives lesser core or iron losses in the SynRMin comparison to the three- and two-level inverters due to lower Id current ripple. The five-level inverter reduces the torque ripple of the SynRM significantly in comparison to the three- and two-level inverter fed SynRM drives. The phase disposition-PWM control method used for the inverter shows the least total harmonic distortion (THD) levels in output voltage compared with the other level shifted PWM techniques.

Originality/value

Among the available topologies, a fitting topology is proposed for use for the SynRM drive to have minimal THD, minimal current and torque ripple. Additionally, this paper presents various modulation techniques available for the selected drive system and reports on a suitable technique based on minimal THD of output voltage and hence minimal torque ripple.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 5 October 2021

Mohammad Reza Naeimi, Karim Abbaszadeh and Reza Nasiri-Zarandi

High torque ripple is the significant challenge of the synchronous reluctance machine in household electric appliances, electric vehicles and so on. This paper aims to present an…

291

Abstract

Purpose

High torque ripple is the significant challenge of the synchronous reluctance machine in household electric appliances, electric vehicles and so on. This paper aims to present an optimized design of a synchronous reluctance rotor structure to reduce the torque ripple with improving the average torque by the particle swarm optimization (PSO) algorithm.

Design/methodology/approach

The optimization of rotor geometries has been investigated. Most of the rotor parameters such as the width of iron parts, the width of barriers along d and q axes and the endpoint angle of barriers are optimized by a new method using the PSO algorithm. After optimization, the resulted optimum design along with the initial design is simulated by two-dimensional finite element method and results are compared. At the end, a prototype is constructed and tested. Results of the experiment are compared with the simulation results where acceptable adoption is yielded.

Findings

Minimizing the torque ripple without losing the average torque is an important achievement of the synchronous reluctance motor (SynRM) optimization; furthermore, the finite element analysis and experimental results indicate that the torque ripple of the SynRM with the optimized rotor is reduced significantly. Also, increasing the number of optimization parameters can effectively obtain an accurate shape of the SynRM barrier.

Originality/value

Because of the high number of parameters in synchronous reluctance rotors, the majority of proposed optimizations did not use all geometric parameters of the rotor and tried to simplify the optimization by ignoring several optimization parameters or reducing the number of flux barriers. In this optimization, most of the rotor parameters have been used to achieve the precise barrier shape with the aim of reducing the torque ripple in SynRM.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2009

Damijan Miljavec, Mykhaylo Zagirnyak and Bogomir Zidarič

The purpose of this paper is to derive the geometry‐based equations for inductances which are used in circuit theory analysis of synchronous reluctance motor (SRM). Transient and…

Abstract

Purpose

The purpose of this paper is to derive the geometry‐based equations for inductances which are used in circuit theory analysis of synchronous reluctance motor (SRM). Transient and steady state performance analyze of SRM by using the 2D time‐stepping finite‐element method (FEM).

Design/methodology/approach

The analytical approach is used to obtain the equations which describe geometry dependent magnetizing inductances of SRM. Transient and steady state performance of the SRM is analyzed by using the 2D time‐stepping FEM. The external electric circuit connected with the finite‐element model of the SRM geometry allows the study of almost any of the electric and magnetic properties of the machine. Presented SRM model is also connected to the external mechanical loads (friction, rotor inertia and load torque). The use of different materials for the magnetic‐pole part of the rotor and for flux barriers was analyzed. The flux barriers in the first SRM rotor were filled with a pure massive electrically conductive ferromagnetic with a proper B‐H curve, whereas the rotor magnetic segments were made of non‐conductive electric steel described with its B‐H curve. The conductive barriers with their end rings form a squirrel cage and allow SRM to start on‐line. The flux barriers of the second SRM rotor were made of aluminum but between the second and third flux barrier a massive electrically‐conductive ferromagnetic was inserted which during starting‐up acted as a part of the squirrel cage. All of the flux barriers of the third SRM rotor were made of electrically‐conductive aluminum with iron parts axially laminated. The finite‐element SRM models coupled with an electric circuit is also used to evaluate the motor performance at various asynchronous speeds.

Findings

Analytical geometry‐dependant equations for the d‐ and q‐axis SRM inductances are derived. On the basis of the proposed 2D time‐stepping finite‐element analysis, the start‐up performance for the SRM rotor design using different materials is established. The torque distribution as a function of time at any of the observed asynchronous speeds is not smooth and uniform. It consists of the stator‐to‐rotor tooth pulsating torque, and the synchronous and asynchronous component.

Research limitations/implications

The main disadvantage of analytical geometry‐dependant equations for the d‐ and q‐axis SRM inductances is the linearization of any of the ferromagnetic parts.

Practical implications

On the basis of the proposed 2D time‐stepping finite‐element analysis, the start‐up performance, asynchronous run and synchronous torque characteristics for the SRM rotor design using different materials are established.

Originality/value

The value of the paper is the closed view about happenings in rotor flux barriers of SRM, mostly regarding the time distribution of induced currents in the rotor flux barriers. On the base of 2D time‐stepping FEM, the use of different materials for the magnetic‐pole part of the rotor and for flux barriers was analyzed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 1995

Damijan Miljavec and Peter Jereb

This paper presents the calculation of pulsating losses in the air‐gap at laminated stator and rotor pole surface of the synchronous reluctance motor (SRM). The calculation is…

Abstract

This paper presents the calculation of pulsating losses in the air‐gap at laminated stator and rotor pole surface of the synchronous reluctance motor (SRM). The calculation is based on change of magnetic flux density in the air‐gap due to the permeance variation on both stator and rotor inner surfaces. These changes are calculated using finite element method. The equation for calculation of the pulsating losses is carried out using reduced Helmholtz's differential equation and the 1st Maxwell equation. Finally, the values measured and calculated are compared to each other.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 14 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 7 March 2016

Shun Cai, Meng-Jia Jin, He Hao and Jian-Xin Shen

The purpose of this paper is to comparatively study a synchronous reluctance machine (SynRM) and a permanent magnet assisted synchronous reluctance machine (PMASynRM) as…

Abstract

Purpose

The purpose of this paper is to comparatively study a synchronous reluctance machine (SynRM) and a permanent magnet assisted synchronous reluctance machine (PMASynRM) as alternatives of the interior permanent magnet synchronous machine (IPMSM), and to investigate the performance and conclude both advantages and disadvantages.

Design/methodology/approach

A unified mathematical model is established for the IPMSM, SynRM and PMASynRM. Then finite element method (FEM) is used to compare the electromagnetic performance. Permeability-frozen method is utilized to distinguish basic electromagnetic torque and reluctance torque.

Findings

The PMASynRM can improve the power factor of the SynRM, overcome the drawback of the IPMSM in the high-speed flux-weakening region and is more proper to operate over a wide speed region. The SynRM is mechanically robust for lacking of the permanent magnets, and the PMASynRM can keep similar rotor stress as the SynRM by optimizing the magnets. Assembly of the SynRM is the simplest, and the economic performance of the SynRM and PMASynRM could be much better than the IPMSM which even uses ferrite magnets.

Practical/implications

The SynRM can produce identical torque and efficiency compared with the IPMSM except the poor power factor. The poor power factor could be improved by adopting the PMASynRM, which is proved to be able to act as an alternative of the IPMSM for low-cost high-performance application.

Originality/value

This paper provides the theoretical model of the IPMSM, SynRM and PMASynRM in a unified format. The electromagnetic, mechanical and economic performances of the three kinds of synchronous motors are compared comprehensively. Then, both the advantages and disadvantages are summarized.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2022

Yuki Hidaka

The purpose of this paper is to develop a multi-material topology optimization method for permanent magnet-assisted synchronous reluctance motors.

Abstract

Purpose

The purpose of this paper is to develop a multi-material topology optimization method for permanent magnet-assisted synchronous reluctance motors.

Design/methodology/approach

In the proposed method, the optimization procedure consists of two steps. In the first step, the entire rotor area was selected for the design region and the distribution of the core and air materials was optimized. In the second step, the design region was limited to the air region of the former solution and the distribution of magnets and cores or magnets and air was optimized.

Findings

Because of the two-step process of the proposed method, the design parameters can be reduced compared to the conventional method. As a result, this study can prevent the solution space from becoming more complex and superior solutions can be founded effectively.

Research limitations/implications

Since limited case study is denoted in this paper, much more case studies, for example, three-dimensional optimization problems, are needed to be discussed.

Practical implications

The optimal solutions obtained by the proposed method have a smaller magnet volume and higher average torque than that of the conventional method.

Originality/value

In the proposed methods, optimization methodology, which consists of two-steps process, is differed from the conventional method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Massimo Barcaro and Nicola Bianchi

The purpose of this paper is to give an overview of the design issues of permanent magnet machines for the hybrid electric and plug‐in electric vehicles, including railway…

Abstract

Purpose

The purpose of this paper is to give an overview of the design issues of permanent magnet machines for the hybrid electric and plug‐in electric vehicles, including railway traction and naval propulsion.

Design/methodology/approach

Focus is given on both synchronous permanent magnet and reluctance machines. An overview of the design rules are provided, covering the topics of: fractional‐slot windings, fault‐tolerant configurations, flux‐weakening capability, and torque quality.

Findings

The peculiarities of these machines and the advanced design considerations to fit the automotive requirements are analyzed.

Originality/value

The paper includes a wide description of innovative electrical machines for electric vehicles, including not only the traction capability, but also analysis of features as weight reduction, torque ripple reduction, increase of fault tolerance, and so on.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 339