Search results

1 – 10 of 115
Article
Publication date: 15 April 2024

Boussad Moualek, Simon Chauviere, Lamia Belguerras, Smail Mezani and Thierry Lubin

The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.

Abstract

Purpose

The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.

Design/methodology/approach

The paper deals with the design of an MRI compatible electrical actuator. Three-dimensional electromagnetic and thermal analytical models have been developed to design the actuator. These models have been validated through 3D finite element (FE) computations. The analytical models have been inserted in an optimization procedure that uses genetic algorithms to find the optimal parameters of the actuator.

Findings

The analytical models are very fast and precise compared to the FE models. The computation time is 0.1 s for the electromagnetic analytical model and 3 min for the FE one. The optimized actuator does not perturb imaging sequence even if supplied with a current 10 times higher than its rated one. Indeed, the actuator’s magnetic field generated in the imaging area does not exceed 1 ppm of the B0 field generated by the MRI scanner. The actuator can perform up to 25 biopsy cycles without any risk to the actuator or the patient since he maximum temperature rise of the actuator is about 20°C. The actuator is compact and lightweight compared to its pneumatic counterpart.

Originality/value

The MRI compatible actuator uses the B0 field generated by scanner as inductor. The design procedure uses magneto-thermal coupled models that can be adapted to the design of a variety actuation systems working in MRI environment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 January 2024

Natthawut Daoset, Samroeng Inglam, Sujin Wanchat and Nattapon Chantarapanich

This paper aims to investigate the influence of post-curing temperature, post-curing time and gamma ray irradiation dose upon the tensile and compressive mechanical properties of…

Abstract

Purpose

This paper aims to investigate the influence of post-curing temperature, post-curing time and gamma ray irradiation dose upon the tensile and compressive mechanical properties of the medical graded vat photopolymerization parts.

Design/methodology/approach

Medical graded vat photopolymerization specimens, made from photopolymer resin, were fabricated using bottom-up vat photopolymerization machine. Tensile and compressive tests were conducted to assess the mechanical properties. The specimens were categorized into uncured and post-curing groups. Temperature post-processing and/or gamma irradiation exposure were for post-curing specimens. The post-curing parameters considered included temperature levels of 50°C, 60°C and 70°C, with 1, 2, 3 and 4 h periods. For the gamma irradiation, the exposure doses were 25, 50, 75 and 100 kGy.

Findings

Post-curing improved the mechanical properties of medical graded vat photopolymerization parts for both tensile and compressive specimens. Post-curing temperature greater than 50°C or a prolonged post-curing period of more than 1 h made insignificant changes or deterioration in mechanical properties. The optimal post-curing condition was therefore a 50°C post-curing temperature with 1 h post-curing time. Exposure to gamma ray improved the compressive mechanical properties, but deteriorated tensile mechanical properties. Higher gamma irradiation doses could decrease the mechanical properties and also make the part more brittle, especially for doses more than 25 kGy.

Originality/value

The obtained results would be beneficial to the medical device manufacturer who fabricated the invasive temporary contact personalized surgical instruments by vat photopolymerization technique. In addition, it also raised awareness in excessive gamma sterilization in the medical graded vat photopolymerization parts.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 4 April 2024

Bassem T. ElHassan and Alya A. Arabi

The purpose of this paper is to illuminate the ethical concerns associated with the use of artificial intelligence (AI) in the medical sector and to provide solutions that allow…

Abstract

Purpose

The purpose of this paper is to illuminate the ethical concerns associated with the use of artificial intelligence (AI) in the medical sector and to provide solutions that allow deriving maximum benefits from this technology without compromising ethical principles.

Design/methodology/approach

This paper provides a comprehensive overview of AI in medicine, exploring its technical capabilities, practical applications, and ethical implications. Based on our expertise, we offer insights from both technical and practical perspectives.

Findings

The study identifies several advantages of AI in medicine, including its ability to improve diagnostic accuracy, enhance surgical outcomes, and optimize healthcare delivery. However, there are pending ethical issues such as algorithmic bias, lack of transparency, data privacy issues, and the potential for AI to deskill healthcare professionals and erode humanistic values in patient care. Therefore, it is important to address these issues as promptly as possible to make sure that we benefit from the AI’s implementation without causing any serious drawbacks.

Originality/value

This paper gains its value from the combined practical experience of Professor Elhassan gained through his practice at top hospitals worldwide, and the theoretical expertise of Dr. Arabi acquired from international institutes. The shared experiences of the authors provide valuable insights that are beneficial for raising awareness and guiding action in addressing the ethical concerns associated with the integration of artificial intelligence in medicine.

Details

International Journal of Ethics and Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9369

Keywords

Article
Publication date: 24 January 2024

Nirmal Singh, Harmanjit Singh Banga, Jaswinder Singh and Rajnish Sharma

This paper aims to prompt ideas amongst readers (especially librarians) about how they can become active partners in knowledge dissemination amongst concerned user groups by…

Abstract

Purpose

This paper aims to prompt ideas amongst readers (especially librarians) about how they can become active partners in knowledge dissemination amongst concerned user groups by implementing 3D printing technology under the “Makerspace.”

Design/methodology/approach

The paper provides a brief account of various tools and techniques used by veterinary and animal sciences institutions for information dissemination amongst the stakeholders and associated challenges with a focus on the use of 3D printing technology to overcome the bottlenecks. An overview of the 3D printing technology has been provided following the instances of use of this novel technology in veterinary and animal sciences. An initiative of the University Library, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, to harness the potential of this technology in disseminating information amongst livestock stakeholders has been discussed.

Findings

3D printing has the potential to enhance learning in veterinary and animal sciences by providing hands-on exposure to various anatomical structures, such as bones, organs and blood vessels, without the need for a cadaver. This approach enhances students’ spatial understanding and helps them better understand anatomical concepts. Libraries can enhance their visibility and can contribute actively to knowledge dissemination beyond traditional library services.

Originality/value

The ideas about how to harness the potential of 3D printing in knowledge dissemination amongst livestock sector stakeholders have been elaborated. This promotes creativity amongst librarians enabling them to think how they can engage in knowledge dissemination thinking out of the box.

Details

Library Hi Tech News, vol. 41 no. 2
Type: Research Article
ISSN: 0741-9058

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 12 April 2024

Celia Rufo-Martín, Ramiro Mantecón, Geroge Youssef, Henar Miguelez and Jose Díaz-Álvarez

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth…

Abstract

Purpose

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth process–structure–properties studies. This study aims to elucidate the mechanistic effects of processing parameters and sterilization on PMMA-based implants.

Design/methodology/approach

The approach comprised manufacturing samples with different raster angle orientations to capitalize on the influence of the filament alignment with the loading direction. One sample set was sterilized using an autoclave, while another was kept as a reference. The samples underwent a comprehensive characterization regimen of mechanical tension, compression and flexural testing. Thermal and microscale mechanical properties were also analyzed to explore the extent of the appreciated modifications as a function of processing conditions.

Findings

Thermal and microscale mechanical properties remained almost unaltered, whereas the mesoscale mechanical behavior varied from the as-printed to the after-autoclaving specimens. Although the mechanical behavior reported a pronounced dependence on the printing orientation, sterilization had minimal effects on the properties of 3D printed PMMA structures. Nonetheless, notable changes in appearance were attributed, and heat reversed as a response to thermally driven conformational rearrangements of the molecules.

Originality/value

This research further deepens the viability of 3D printed PMMA for biomedical applications, contributing to the overall comprehension of the polymer and the thermal processes associated with its implementation in biomedical applications, including personalized implants.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 March 2024

Natália Ransolin, Tarcisio Abreu Saurin, Robyn Clay-Williams, Carlos Torres Formoso, Frances Rapport and John Cartmill

Surgical services are settings where resilient performance (RP) is necessary to cope with a wide range of variabilities. Although RP can benefit from a supportive built…

Abstract

Purpose

Surgical services are settings where resilient performance (RP) is necessary to cope with a wide range of variabilities. Although RP can benefit from a supportive built environment (BE), prior studies have focused on the operating room, giving scant attention to support areas. This study takes a broader perspective, aiming at developing BE design knowledge supportive of RP at the surgical service as a whole.

Design/methodology/approach

Seven BE design prescriptions developed in a previous work in the context of internal logistics of hospitals, and thus addressing interactions between workspaces, were used as a point of departure. The prescriptions were used as a data analysis framework in a case study of the surgical service of a medium-sized private hospital. The scope of the study included surgical and support areas, in addition to workflows involving patients and family members, staff, equipment, sterile instruments and materials, supplies, and waste. Data collection included document analysis, observations, interviews, and meetings with hospital staff.

Findings

Results identified 60 examples of using the prescriptions, 77% of which were related to areas other than the operating rooms. The developed design knowledge is framed as a set of prescriptions, examples, and their association to workflows and areas, indicating where it should be applied.

Originality/value

The design knowledge is new in surgical services and offers guidance to both BE and logistics designers.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 5 February 2024

Marianne Jaakkola, Soila Lemmetty, Kaija Collin, Minna Ylönen and Teuvo Antikainen

This study aims to increase the understanding of the starting points and presuppositions of organizational learning (OL) processes in a hospital’s surgical department based on the…

Abstract

Purpose

This study aims to increase the understanding of the starting points and presuppositions of organizational learning (OL) processes in a hospital’s surgical department based on the existing theory of OL and to make visible the practical possibilities of the theory in this context.

Design/methodology/approach

The study was conducted as a case study. The data were collected from personnel of the hospital’s surgical department and consisted of 26 thematic interviews. The data were analyzed using qualitative theory-driven content analysis.

Findings

This study found different starting points for both employee-oriented and organization-oriented learning processes that could potentially progress to different levels of the organization: from individuals to a wider group or from a large group to an individual. The starting point of employee-oriented learning processes was depicted as everyday life problems or situations or was based on the person’s interest. The starting points of organization-oriented learning processes were described as achieving or maintaining the organization’s expected skill levels, pursuing continuous development or pursuing the organization’s specific development needs. Different kinds of presuppositions were also located within the OL processes.

Originality/value

This study produced new practice-based knowledge about the starting points of OL processes and their presuppositions. In health-care organizations, learning is especially important due to intensive and complex changes, and this study provides empirical evidence on how to enhance learning.

Details

The Learning Organization, vol. 31 no. 3
Type: Research Article
ISSN: 0969-6474

Keywords

Article
Publication date: 1 January 2024

Shrutika Sharma, Vishal Gupta, Deepa Mudgal and Vishal Srivastava

Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to…

Abstract

Purpose

Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to experiment with different printing settings. The current study aims to propose a regression-based machine learning model to predict the mechanical behavior of ulna bone plates.

Design/methodology/approach

The bone plates were formed using fused deposition modeling (FDM) technique, with printing attributes being varied. The machine learning models such as linear regression, AdaBoost regression, gradient boosting regression (GBR), random forest, decision trees and k-nearest neighbors were trained for predicting tensile strength and flexural strength. Model performance was assessed using root mean square error (RMSE), coefficient of determination (R2) and mean absolute error (MAE).

Findings

Traditional experimentation with various settings is both time-consuming and expensive, emphasizing the need for alternative approaches. Among the models tested, GBR model demonstrated the best performance in predicting both tensile and flexural strength and achieved the lowest RMSE, highest R2 and lowest MAE, which are 1.4778 ± 0.4336 MPa, 0.9213 ± 0.0589 and 1.2555 ± 0.3799 MPa, respectively, and 3.0337 ± 0.3725 MPa, 0.9269 ± 0.0293 and 2.3815 ± 0.2915 MPa, respectively. The findings open up opportunities for doctors and surgeons to use GBR as a reliable tool for fabricating patient-specific bone plates, without the need for extensive trial experiments.

Research limitations/implications

The current study is limited to the usage of a few models. Other machine learning-based models can be used for prediction-based study.

Originality/value

This study uses machine learning to predict the mechanical properties of FDM-based distal ulna bone plate, replacing traditional design of experiments methods with machine learning to streamline the production of orthopedic implants. It helps medical professionals, such as physicians and surgeons, make informed decisions when fabricating customized bone plates for their patients while reducing the need for time-consuming experimentation, thereby addressing a common limitation of 3D printing medical implants.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 April 2024

Venkataramanaiah Saddikuti, Surya Prakash, Vijaydeep Siddharth, Kanika Jain and Sidhartha Satpathy

The primary objective of this article is to examine current procurement, inventory control and management practices in modern healthcare, with a particular focus on the…

58

Abstract

Purpose

The primary objective of this article is to examine current procurement, inventory control and management practices in modern healthcare, with a particular focus on the procurement and management of surgical supplies in a prominent public, highly specialized healthcare sector.

Design/methodology/approach

This study was conducted in three phases. In Phase 1, the study team interacted with various hospital management stakeholders, including the surgical hospital store, examined the current procurement process and identified challenges. Phase 2 focused on selecting items for a detailed study and collected the qualitative and quantitative details of the store department of the healthcare sector chosen. A detailed study analyzed revenue, output/demand, inventory levels, etc. In Phase 3, a decision-making framework is proposed, and inventory control systems are redesigned and demonstrated for the selected items.

Findings

It was observed that the demand for many surgical items had increased significantly over the years due to an increase in disposable/disposable items, while inventories fluctuated widely. Maximum inventory levels varied between 50 and 75%. Storage and availability were important issues for the hospital. It is assumed the hospital adopts the proposed inventory control system. In this case, the benefits can be a saving of 62% of the maximum inventory, 20% of the average stock in the system and optimal use of storage space, improving the performance and productivity of the hospital.

Research limitations/implications

This study can help the healthcare sector administration to develop better systems for the procurement and delivery of common surgical items and efficient resource allocation. It can help provide adequate training to store staff. This study can help improve management/procurement policies, ordering and delivery systems, better service levels, and inventory control of items in the hospital business context. This study can serve as a pilot study to further investigate the overall hospital operations.

Practical implications

This study can help the healthcare sector administration develop better systems for procuring and delivering common surgical items and efficient resource allocation. It can help provide adequate training to store staff. This study can help improve management/procurement policies, ordering and delivery systems, better service levels and inventory control of items in the hospital business context. This study can serve as a pilot study to further investigate the overall hospital operations.

Originality/value

This study is an early attempt to develop a decision framework and inventory control system from the perspective of healthcare inventory management. The gaps identified in real hospital scenarios are investigated, and theoretically based-inventory management strategies are applied and proposed.

Details

Journal of Advances in Management Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0972-7981

Keywords

1 – 10 of 115