Search results

1 – 10 of over 127000
Open Access
Article
Publication date: 26 July 2021

Weifei Hu, Tongzhou Zhang, Xiaoyu Deng, Zhenyu Liu and Jianrong Tan

Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant…

12113

Abstract

Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant attraction in both industry and academia, there is no systematic understanding of DT from its development history to its different concepts and applications in disparate disciplines. The majority of DT literature focuses on the conceptual development of DT frameworks for a specific implementation area. Hence, this paper provides a state-of-the-art review of DT history, different definitions and models, and six types of key enabling technologies. The review also provides a comprehensive survey of DT applications from two perspectives: (1) applications in four product-lifecycle phases, i.e. product design, manufacturing, operation and maintenance, and recycling and (2) applications in four categorized engineering fields, including aerospace engineering, tunneling and underground engineering, wind engineering and Internet of things (IoT) applications. DT frameworks, characteristic components, key technologies and specific applications are extracted for each DT category in this paper. A comprehensive survey of the DT references reveals the following findings: (1) The majority of existing DT models only involve one-way data transfer from physical entities to virtual models and (2) There is a lack of consideration of the environmental coupling, which results in the inaccurate representation of the virtual components in existing DT models. Thus, this paper highlights the role of environmental factor in DT enabling technologies and in categorized engineering applications. In addition, the review discusses the key challenges and provides future work for constructing DTs of complex engineering systems.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 31 December 2006

Cecilia Challiol, Gustavo Rossi, Silvia Gordillo and Valeria De CristÓfolo

In this paper we present a model‐based approach for the development of physical hypermedia applications, i.e. those mobile (Web) applications in which physical and digital objects…

Abstract

In this paper we present a model‐based approach for the development of physical hypermedia applications, i.e. those mobile (Web) applications in which physical and digital objects are related and explored using the hypermedia paradigm. We describe an extension of the Object‐Oriented Hypermedia Design Method (OOHDM) and present an improvement of the popular Model‐View‐Controller (MVC) metaphor to incorporate the concept of located object we illustrate the idea with a framework implementation using Jakarta Struts. We first review the state of the art of this kind of software systems, stressing the need of a systematic design and implementation approach we briefly present a light extension to the OOHDM design approach, incorporating physical objects and “walkable” links. We next present a Web application framework for deploying physical hypermedia software and show an example of use. We evaluate our approach and finally we discuss some further work we are pursuing.

Details

International Journal of Web Information Systems, vol. 2 no. 3/4
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 16 September 2021

Sílvio Aparecido Verdério Júnior, Vicente Luiz Scalon and Santiago del Rio Oliveira

The purpose of this study is to analyze the influence of the main physical–numerical parameters in the computational evaluation of natural convection heat transfer rates in…

Abstract

Purpose

The purpose of this study is to analyze the influence of the main physical–numerical parameters in the computational evaluation of natural convection heat transfer rates in isothermal flat square plates in the laminar regime. Moreover by experimentally validate the results of the numerical models and define the best parameter settings for the problem situation studied.

Design/methodology/approach

The present work is an extension of the study by Verderio Junior et al. (2021), differing in the modeling, results analysis and conclusions for the laminar flow regime with Rade=1×105. The analysis of the influence and precision of the physical–numerical parameters: boundary conditions, degree of mesh refinement, refinement layers and κω SST and κε turbulence models, occurred from the results from 48 numerical models, which were simulated using the OpenFOAM® software. Comparing the experimental mean Nusselt number with the numerical values obtained in the simulations and the analysis of the relative errors were used in the evaluation of the advantages, restrictions and selection of the most adequate parameters to the studied problem situation.

Findings

The numerical results of the simulations were validated, with excellent precision, from the experimental reference by Kitamura et al. (2015). The application of the κω SST and κε turbulence models and the boundary conditions (with and without wall functions) were also physically validated. The use of the κω SST and κε turbulence models, in terms of cost-benefit and precision, proved to be inefficient in the problem situation studied. Simulations without turbulence models proved to be the best option for the physical model for the studies developed. The use of refinement layers, especially in applications with wall functions and turbulence models, proved unfeasible.

Practical implications

Use of the physical–numerical parameters studied and validated, and application of the modeling and analysis methodology developed in projects and optimizations of natural convection thermal systems in a laminar flow regime. Just like, reduce costs and the dependence on the construction of experimental apparatus to obtain experimental results and in the numerical-experimental validation process.

Social implications

Exclusive use of free and open-source computational tools as an alternative to feasible research in the computational fluid dynamics area in conditions of budget constraints and lack of higher value-added infrastructure, with applicability in the academic and industrial areas.

Originality/value

The results and discussions presented are original and new for the applied study of laminar natural convection in isothermal flat plate, with analysis and validation of the main physical and numerical influence parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 April 2015

Bo Zhao

The purpose of this paper is to establish three modeling methods (physical model, statistical model, and artificial neural network (ANN) model) and use it to predict the fiber…

Abstract

Purpose

The purpose of this paper is to establish three modeling methods (physical model, statistical model, and artificial neural network (ANN) model) and use it to predict the fiber diameter of spunbonding nonwovens from the process parameters.

Design/methodology/approach

The results show the physical model is based on the inherent physical principles, it can yield reasonably good prediction results and provide insight into the relationship between process parameters and fiber diameter.

Findings

By analyzing the results of the physical model, the effects of process parameters on fiber diameter can be predicted. The ANN model has good approximation capability and fast convergence rate, it can provide quantitative predictions of fiber diameter and yield more accurate and stable predictions than the statistical model.

Originality/value

The effects of process parameters on fiber diameter are also determined by the ANN model. Excellent agreement is obtained between these two modeling methods.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 April 2002

Sushil

Two important methodologies having some common grounds, but based on differing contexts and paradigms are Physical System Theory (PST) and System Dynamics (SD). The developments…

1743

Abstract

Two important methodologies having some common grounds, but based on differing contexts and paradigms are Physical System Theory (PST) and System Dynamics (SD). The developments in both the fields have taken place almost independently, and attempts have been made to integrate the two to complement their strengths and limitations. This paper provides an overview of PST in terms of its foundations, philosophy, fundamental postulates, recent developments on its simplification and enlargement, and applications to socio‐economic and managerial systems. A comparison of PST is made with SD on different fronts so as to understand their similarities and differences for carving out their place in modelling of managerial and socio‐economic systems and integrating the two more meaningfully and flexibly. The paper is concluded emphasizing the need for a ‘Flexible System Theory’ which can relate many such systems based approaches and techniques on the whole continuum from hard to soft systems thinking to cater the whole spectrum of problem situations effectively.

Details

Kybernetes, vol. 31 no. 3/4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 18 August 2022

Zhufeng Yue, Ming Li, Lei Li and Zude Zhou

This paper aims to propose a new concept of product manufacturing mode which takes physical manufacturing theory as the basic starting point. In this work, the authors intend to…

133

Abstract

Purpose

This paper aims to propose a new concept of product manufacturing mode which takes physical manufacturing theory as the basic starting point. In this work, the authors intend to systematically define the basic connotation and extension of physical manufacturing, and sort out the typical characteristics of physical manufacturing, in order to propose the general concept of physical manufacturing.

Design/methodology/approach

How to study the combination of physics, mathematics, mechanics and other disciplines with the manufacturing disciplines, and how to elevate modern manufacturing science to a new height, has always been a problem for scientists in the field of manufacturing and engineering construction people to deeply think about. Therefore, on the basis of tracing the development of physics and combining the attributes and functions of manufacturing, the authors propose the basic concept of physical manufacturing. On this basis, the authors further clarify the connotation and extension, theoretical basis and technical system of physical manufacturing, reveal the basic problem domain of research and construct the theoretical foundation of physical manufacturing research, which are of great theoretical value and practical significance to adjust and optimize the manufacturing industry structure, improve the quality of manufacturing industry development and promote the green development of manufacturing industry.

Findings

The research on the basic theory and technical system of physical manufacturing will therefore broaden the way of thinking and make a better understanding of manufacturing science and technology, which will promote the development of manufacturing industry to some extent.

Originality/value

On the basis of continuous improvement of the basic theory and conceptual system of physical manufacturing, the physical manufacturing technology will become more and more perfect; physical manufacturing system and intelligent manufacturing system will become the mainstream of next-generation manufacturing system.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 August 2009

Y.T. Feng, K. Han, D.R.J. Owen and J. Loughran

The main purpose of this paper is to derive a set of similarity principles for discrete element modelling so that a numerical model can exactly reproduce the physical phenomenon…

1605

Abstract

Purpose

The main purpose of this paper is to derive a set of similarity principles for discrete element modelling so that a numerical model can exactly reproduce the physical phenomenon concerned.

Design/methodology/approach

The objective is achieved by introducing the concepts of particle “strain” and “stress” so that some equivalence between the physical system and the numerical model can be established.

Findings

Three similarity principles, namely geometric, mechanical and dynamic, under which the numerical model can exactly reproduce the mechanical behaviour of a physical model are proposed. In particular, the concept of the scale invariant interaction law is further introduced. The scalability of a number of most commonly used interaction laws in the discrete element modelling is examined.

Research limitations/implications

This is a preliminary research for a very important and challenging topic. More research, particularly in the understanding of the convergent properties of discrete element models, is needed.

Originality/value

The paper provides some important theoretical guidances to computational modelling of particle systems using discrete element techniques.

Details

Engineering Computations, vol. 26 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 August 2010

P.Y. Peggy Cheung and Bik C. Chow

Parents are important agents in the physical activity socializing process in children. The present study aims to examine the parental mediatory role in children's physical

1919

Abstract

Purpose

Parents are important agents in the physical activity socializing process in children. The present study aims to examine the parental mediatory role in children's physical activity participation via a youth physical activity promotion (YPAP) model.

Design/methodology/approach

A total of 872 Hong Kong Chinese children (aged ten to 13) in ten schools were invited to participate in the study. Their physical self‐perception, physical activity perception, parental influence, and physical activity level were assessed. Structural equation modelling was employed to examine the relationship among the variables.

Findings

The final model accounted for 18 per cent of the variance in children's physical activity participation. Parental influence imposed a direct (β=0.19) and indirect effect on children's physical activity participation through the children's physical activity perception (β=0.33) and physical self‐perceptions (β=0.19).

Research limitations/implications

This study involved a cross‐sectional design and data were collected over a single time frame; a cause‐and‐effect relationship among variables could not be drawn.

Originality/value

The present study emphasizes how parental influence is related to children's physical participation. The information is useful for health professionals in the design of intervention programs to promote children's physical activity participation.

Details

Health Education, vol. 110 no. 5
Type: Research Article
ISSN: 0965-4283

Keywords

Article
Publication date: 1 January 1972

DONALD J. BOWERSOX, OMAR KEITH HELFERICH and EDWARD J. MARIEN

The problem considered in this paper is that of long range planning of physical distribution systems and how this may be improved through simulation

Abstract

The problem considered in this paper is that of long range planning of physical distribution systems and how this may be improved through simulation

Details

International Journal of Physical Distribution, vol. 2 no. 1
Type: Research Article
ISSN: 0020-7527

Book part
Publication date: 31 October 2015

Guoqing Tang and Caesar R. Jackson

In this chapter, we present our ongoing efforts in developing and sustaining interdisciplinary STEM undergraduate programs at North Carolina A&T State University (NCA&T) – a…

Abstract

In this chapter, we present our ongoing efforts in developing and sustaining interdisciplinary STEM undergraduate programs at North Carolina A&T State University (NCA&T) – a state-supported HBCU and National Science Foundation (NSF) Historically Black Colleges and Universities Undergraduate Program (HBCU-UP) Institutional Implementation Project grantee. Through three rounds of NSF HBCU-UP implementation grants, a concerted effort has been made in developing interdisciplinary STEM undergraduate research programs in geophysical and environmental science (in round 1), geospatial, computational, and information science (in round 2), and mathematical and computational biology (in round 3) on NCA&T campus. We first present a brief history and background information about the interdisciplinary STEM undergraduate research programs developed and sustained at NCA&T, giving rationales on how these programs had been conceived, and summarizing what have been achieved. Next we give a detailed description on the development of undergraduate research infrastructure including building research facilities through multiple and leveraged funding sources, and engaging a core of committed faculty mentors and research collaborators. We then present, as case studies, some sample interdisciplinary research projects in which STEM undergraduate students were engaged and project outcomes. Successes associated to our endeavor in developing undergraduate research programs as well as challenges and opportunities on implementing and sustaining these efforts are discussed. Finally, we discuss the impact of well-structured undergraduate research training on student success in terms of academic performance, graduation rate and continuing graduate study, and summarize many of the learnings we have gained from implementation and delivery of undergraduate research experiences at HBCUs.

Details

Infusing Undergraduate Research into Historically Black Colleges and Universities Curricula
Type: Book
ISBN: 978-1-78560-159-0

Keywords

1 – 10 of over 127000