Search results

1 – 10 of over 1000
Article
Publication date: 13 July 2023

Luya Yang, Xinbo Huang, Yucheng Ren, Qi Han and Yanchen Huang

In the process of continuous casting and rolling of steel plate, due to the influence of rolling equipment and process, there are scratches, inclusions, patches, scabs and pitted…

Abstract

Purpose

In the process of continuous casting and rolling of steel plate, due to the influence of rolling equipment and process, there are scratches, inclusions, patches, scabs and pitted surfaces on the surface of steel plate, which will not only affect the corrosion resistance, wear resistance and fatigue strength of steel plate but also may cause production accidents. Therefore, the detection of steel plate surface defect must be strengthened to ensure the production quality of steel plate and the smooth development of industrial construction.

Design/methodology/approach

(1) A steel plate surface defect detection technology based on small datasets is proposed, which can detect multiple surface defects and fill in the blank of scab defect detection. (2) A detection system based on intelligent recognition technology is built. The steel plate images are collected by the front-end monitoring device, then transmitted to the back-end monitoring center and processed by the embedded intelligent algorithms. (3) In order to reduce the impact of external light on the image, an improved Multi-Scale Retinex (MSR) enhancement algorithm based on adaptive weight calculation is proposed, which lays the foundation for subsequent object segmentation and feature extraction. (4) According to the different factors such as the cause and shape, the texture and shape features are combined to classify different defects on the steel plate surface. The defect classification model is constructed and the classification results are recorded and stored, which has certain application value in the field of steel plate surface defect detection. (5) The practicability and effectiveness of the proposed method are verified by comparison with other methods, and the field running tests are conducted based on the equipment commissioning field of China Heavy Machinery Institute.

Findings

When applied to small dataset, the precision of the proposed method is 94.5% and the time is 23.7 ms. In order to compare with deep learning technology, after expanding the image dataset, the precision and detection time of this paper are 0.948 and 24.2 ms, respectively. The proposed method is superior to other traditional image processing and deep learning methods. And the field recognition precision is 91.7%.

Originality/value

In brief, the steel plate surface defect detection technology based on computer vision is effective, but the previous attempts and methods are not comprehensive and the accuracy and detection speed need to be improved. Therefore, a more practical and comprehensive technology is developed in this paper. The main contributions are as follows: (1) A steel plate surface defect detection technology based on small datasets is proposed, which can detect multiple surface defects and fill in the blank of scab defect detection. (2) A detection system based on intelligent recognition technology is built. The steel plate images are collected by the front-end monitoring device, then transmitted to the back-end monitoring center and processed by the embedded intelligent algorithms. (3) In order to reduce the impact of external light on the image, an improved MSR enhancement algorithm based on adaptive weight calculation is proposed, which lays the foundation for subsequent object segmentation and feature extraction. (4) According to the different factors such as the cause and shape, the texture and shape features are combined to classify different defects on the steel plate surface. The defect classification model is constructed and the classification results are recorded and stored, which has certain application value in the field of steel plate surface defect detection. (5) The practicability and effectiveness of the proposed method are verified by comparison with other methods, and the field running tests are conducted based on the equipment commissioning field of China Heavy Machinery Institute.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 1 June 2022

Hua Zhai and Zheng Ma

Effective rail surface defects detection method is the basic guarantee to manufacture high-quality rail. However, the existed visual inspection methods have disadvantages such as…

Abstract

Purpose

Effective rail surface defects detection method is the basic guarantee to manufacture high-quality rail. However, the existed visual inspection methods have disadvantages such as poor ability to locate the rail surface region and high sensitivity to uneven reflection. This study aims to propose a bionic rail surface defect detection method to obtain the high detection accuracy of rail surface defects under uneven reflection environments.

Design/methodology/approach

Through this bionic rail surface defect detection algorithm, the positioning and correction of the rail surface region can be computed from maximum run-length smearing (MRLS) and background difference. A saliency image can be generated to simulate the human visual system through some features including local grayscale, local contrast and edge corner effect. Finally, the meanshift algorithm and adaptive threshold are developed to cluster and segment the saliency image.

Findings

On the constructed rail defect data set, the bionic rail surface defect detection algorithm shows good recognition ability on the surface defects of the rail. Pixel- and defect-level index in the experimental results demonstrate that the detection algorithm is better than three advanced rail defect detection algorithms and five saliency models.

Originality/value

The bionic rail surface defect detection algorithm in the production process is proposed. Particularly, a method based on MRLS is introduced to extract the rail surface region and a multifeature saliency fusion model is presented to identify rail surface defects.

Details

Sensor Review, vol. 42 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 June 2011

Ya‐Hui Tsai, Du‐Ming Tsai, Wei‐Chen Li, Wei‐Yao Chiu and Ming‐Chin Lin

The purpose of this paper is to develop a robot vision system for surface defect detection of 3D objects. It aims at the ill‐defined qualitative items such as stains and scratches.

Abstract

Purpose

The purpose of this paper is to develop a robot vision system for surface defect detection of 3D objects. It aims at the ill‐defined qualitative items such as stains and scratches.

Design/methodology/approach

A robot vision system for surface defect detection may counter: high surface reflection at some viewing angles; and no reference markers in any sensed images for matching. A filtering process is used to separate the illumination and reflection components of an image. An automatic marker‐selection process and a template‐matching method are then proposed for image registration and anomaly detection in reflection‐free images.

Findings

Tests were performed on a variety of hand‐held electronic devices such as cellular phones. Experimental results show that the proposed system can reliably avoid reflection surfaces and effectively identify small local defects on the surfaces in different viewing angles.

Practical implications

The results have practical implications for industrial objects with arbitrary surfaces.

Originality/value

Traditional visual inspection systems mainly work for two‐dimensional planar surfaces such as printed circuit boards and wafers. The proposed system can find the viewing angles with minimum surface reflection and detect small local defects under image misalignment for three‐dimensional objects.

Details

Industrial Robot: An International Journal, vol. 38 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 October 2018

Hongyao Shen, Weijun Sun and Jianzhong Fu

Fused deposit modeling (FDM) additive manufacturing technology is widely applied in recent years. However, there are many defects that may affect the surface quality, accuracy, or…

Abstract

Purpose

Fused deposit modeling (FDM) additive manufacturing technology is widely applied in recent years. However, there are many defects that may affect the surface quality, accuracy, or even cause the collapse of the parts. This paper presents a solution to the problem of detecting defects on the outer surface in the additive process of FDM.

Design/methodology/approach

A multi-view and all-round vision detection method is introduced where the detection field of view is changing with the vector of the outer surface during the printing process on the six degrees of freedom robot FDM printer.

Findings

After the image is preprocessed, this paper can identify the defects effectively according to its laminate structure, and introduces a mathematical matrix to represent the defects which will be classified into three typical types according to the geometry shape and area distribution.

Research limitations/implications

This research only focuses on the feasibility of the defects detection method. To create the object of high quality, more research is needed to account for the process parameters which significantly cause the defects.

Practical implications

This work will help to detect the defects online, monitor the printing quality of the outer surface, reduce the waste of printed filaments, etc.

Originality/value

This study is among the first to present a multi-view and all-round vision detection method to detect defects on the outer surface in the additive process of FDM; proposes a means of identifying defects according to its laminate structure; and introduces a mathematical matrix to represent the defects which may be used in quality assessment.

Details

Rapid Prototyping Journal, vol. 25 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 December 2021

Jiawei Lian, Junhong He, Yun Niu and Tianze Wang

The current popular image processing technologies based on convolutional neural network have the characteristics of large computation, high storage cost and low accuracy for tiny…

395

Abstract

Purpose

The current popular image processing technologies based on convolutional neural network have the characteristics of large computation, high storage cost and low accuracy for tiny defect detection, which is contrary to the high real-time and accuracy, limited computing resources and storage required by industrial applications. Therefore, an improved YOLOv4 named as YOLOv4-Defect is proposed aim to solve the above problems.

Design/methodology/approach

On the one hand, this study performs multi-dimensional compression processing on the feature extraction network of YOLOv4 to simplify the model and improve the feature extraction ability of the model through knowledge distillation. On the other hand, a prediction scale with more detailed receptive field is added to optimize the model structure, which can improve the detection performance for tiny defects.

Findings

The effectiveness of the method is verified by public data sets NEU-CLS and DAGM 2007, and the steel ingot data set collected in the actual industrial field. The experimental results demonstrated that the proposed YOLOv4-Defect method can greatly improve the recognition efficiency and accuracy and reduce the size and computation consumption of the model.

Originality/value

This paper proposed an improved YOLOv4 named as YOLOv4-Defect for the detection of surface defect, which is conducive to application in various industrial scenarios with limited storage and computing resources, and meets the requirements of high real-time and precision.

Details

Assembly Automation, vol. 42 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 18 January 2016

Zhendong He, Yaonan Wang, Feng Yin and Jie Liu

When using a machine vision inspection system for rail surface defect detection, many complex factors such as illumination changes, reflection inequality, shadows, stains and rust…

Abstract

Purpose

When using a machine vision inspection system for rail surface defect detection, many complex factors such as illumination changes, reflection inequality, shadows, stains and rust might inevitably deform the scanned rail surface image. This paper aims to reduce the influence of these factors, a pipeline of image processing algorithms for robust defect detection is developed.

Design/methodology/approach

First, a new inverse Perona-Malik (P-M) diffusion model is presented for image enhancement, which takes the reciprocal of gradient as feature to adjust the diffusion coefficients, and a distinct nearest-neighbor difference scheme is introduced to select proper defect boundaries during discretized implementation. As a result, the defect regions are sufficiently smoothened, whereas the faultless background remains unchanged. Then, by subtracting the diffused image from the original image, the defect features will be highlighted in the difference image. Subsequently, an adaptive threshold binarization, followed by an attribute opening like filter, can easily eliminate the noisy interferences and find out the desired defects.

Findings

Using data from our developed inspection apparatus, the experiments show that the proposed method can attain a detection and measurement precisions as high as 93.6 and 85.9 per cent, respectively, while the recovery accuracy remains 93 per cent. Additionally, the proposed method is computationally efficient and can perform robustly even under complex environments.

Originality/value

A pipeline of algorithms for rail surface detection is proposed. Particularly, an inverse P-M diffusion model with a distinct discretization scheme is introduced to enhance the defect boundaries and suppress noises. The performance of the proposed method has been verified with real images from our own developed system.

Details

Sensor Review, vol. 36 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 October 2021

Xi Chen, Youheng Fu, Fanrong Kong, Runsheng Li, Yu Xiao, Jiannan Hu and Haiou Zhang

The major problem that limits the widespread use of WAAM technology is the forming quality. However, most of the current research focuses on post-process detections that are…

Abstract

Purpose

The major problem that limits the widespread use of WAAM technology is the forming quality. However, most of the current research focuses on post-process detections that are time-consuming, expensive and destructive. This paper aims to achieve the on-line detection and classification of the common defects, including hump, deposition collapse, deviation, internal pore and surface slag inclusion.

Design/methodology/approach

This paper proposes an in-process multi-feature data fusion nondestructive testing method based on the temperature field of the WAAM process. A thermal imager is used to collect the temperature data of the deposition layer in real-time. Efficient processing methods are proposed in this paper, such as the temperature stack algorithm, width extraction algorithm and a classification model based on a residual neural network. Some features closely related to the forming quality were extracted, containing the profile image and width curve of the deposition layer and abnormal temperature features in longitudinal and cross-sections. These features are used to achieve the detection and classification of defects.

Findings

Thermal non-destructive testing is a potentially superior technology for in-process detection in the industrial field. Based on the temperature field, extracting the most relevant features of the defect information is crucial. This paper pushes current infrared (IR) monitoring methods toward real-time detection and proposes an in-process multi-feature data fusion non-destructive testing method based on the temperature field of the WAAM process.

Originality/value

In this paper, the single-layer and multi-layer WAAM samples are preset with various defects, such as hump, deposition collapse, deviation, pore and slag inclusion. A multi-feature nondestructive testing methodology is proposed to realize the in-process detection and classification of the defects. A temperature stack algorithm is proposed, which improves the detection accuracy of profile change and solves the problem of uneven temperature from arc striking to arc extinguishing. The combination of residual neural network greatly improves the accuracy and efficiency of detection.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 July 2022

Ying Tao Chai and Ting-Kwei Wang

Defects in concrete surfaces are inevitably recurring during construction, which needs to be checked and accepted during construction and completion. Traditional manual inspection…

Abstract

Purpose

Defects in concrete surfaces are inevitably recurring during construction, which needs to be checked and accepted during construction and completion. Traditional manual inspection of surface defects requires inspectors to judge, evaluate and make decisions, which requires sufficient experience and is time-consuming and labor-intensive, and the expertise cannot be effectively preserved and transferred. In addition, the evaluation standards of different inspectors are not identical, which may lead to cause discrepancies in inspection results. Although computer vision can achieve defect recognition, there is a gap between the low-level semantics acquired by computer vision and the high-level semantics that humans understand from images. Therefore, computer vision and ontology are combined to achieve intelligent evaluation and decision-making and to bridge the above gap.

Design/methodology/approach

Combining ontology and computer vision, this paper establishes an evaluation and decision-making framework for concrete surface quality. By establishing concrete surface quality ontology model and defect identification quantification model, ontology reasoning technology is used to realize concrete surface quality evaluation and decision-making.

Findings

Computer vision can identify and quantify defects, obtain low-level image semantics, and ontology can structurally express expert knowledge in the field of defects. This proposed framework can automatically identify and quantify defects, and infer the causes, responsibility, severity and repair methods of defects. Through case analysis of various scenarios, the proposed evaluation and decision-making framework is feasible.

Originality/value

This paper establishes an evaluation and decision-making framework for concrete surface quality, so as to improve the standardization and intelligence of surface defect inspection and potentially provide reusable knowledge for inspecting concrete surface quality. The research results in this paper can be used to detect the concrete surface quality, reduce the subjectivity of evaluation and improve the inspection efficiency. In addition, the proposed framework enriches the application scenarios of ontology and computer vision, and to a certain extent bridges the gap between the image features extracted by computer vision and the information that people obtain from images.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 September 2019

Yupei Wu, Di Guo, Huaping Liu and Yao Huang

Automatic defect detection is a fundamental and vital topic in the research field of industrial intelligence. In this work, the authors develop a more flexible deep learning…

Abstract

Purpose

Automatic defect detection is a fundamental and vital topic in the research field of industrial intelligence. In this work, the authors develop a more flexible deep learning method for the industrial defect detection.

Design/methodology/approach

The authors propose a unified framework for detecting defects in industrial products or planar surfaces based on an end-to-end learning strategy. A lightweight deep learning architecture for blade defect detection is specifically demonstrated. In addition, a blade defect data set is collected with the dual-arm image collection system.

Findings

Numerous experiments are conducted on the collected data set, and experimental results demonstrate that the proposed system can achieve satisfactory performance over other methods. Furthermore, the data equalization operation helps for a better defect detection result.

Originality/value

An end-to-end learning framework is established for defect detection. Although the adopted fully convolutional network has been extensively used for semantic segmentation in images, to the best knowledge of the authors, it has not been used for industrial defect detection. To remedy the difficulties of blade defect detection which has been analyzed above, the authors develop a new network architecture which integrates the residue learning to perform the efficient defect detection. A dual-arm data collection platform is constructed and extensive experimental validation are conducted.

Details

Assembly Automation, vol. 40 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 15 November 2022

Jun Wu, Cheng Huang, Zili Li, Runsheng Li, Guilan Wang and Haiou Zhang

Wire and arc additive manufacturing (WAAM) is a widely used advanced manufacturing technology. If the surface defects occurred during welding process cannot be detected and…

Abstract

Purpose

Wire and arc additive manufacturing (WAAM) is a widely used advanced manufacturing technology. If the surface defects occurred during welding process cannot be detected and repaired in time, it will form the internal defects. To address this problem, this study aims to develop an in situ monitoring system for the welding process with a high-dynamic range imaging (HDR) melt pool camera.

Design/methodology/approach

An improved you only look once version 3 (YOLOv3) model was proposed for online surface defects detection and classification. In this paper, improvements were mainly made in the bounding box clustering algorithm, bounding box loss function, classification loss function and network structure.

Findings

The results showed that the improved model outperforms the Faster regions with convolutional neural network features, single shot multibox detector, RetinaNet and YOLOv3 models with mAP value of 98.0% and a recognition rate of 59 frames per second. And it was indicated that the improved YOLOv3 model satisfied the requirements of real-time monitoring well in both efficiency and accuracy.

Originality/value

Experimental results show that the improved YOLOv3 model can solve the problem of poor performance of traditional defect detection models and other deep learning models. And the proposed model can meet the requirements of WAAM quality monitoring.

1 – 10 of over 1000