Search results

1 – 10 of 585
Open Access
Article
Publication date: 1 June 2022

Hua Zhai and Zheng Ma

Effective rail surface defects detection method is the basic guarantee to manufacture high-quality rail. However, the existed visual inspection methods have disadvantages such as…

Abstract

Purpose

Effective rail surface defects detection method is the basic guarantee to manufacture high-quality rail. However, the existed visual inspection methods have disadvantages such as poor ability to locate the rail surface region and high sensitivity to uneven reflection. This study aims to propose a bionic rail surface defect detection method to obtain the high detection accuracy of rail surface defects under uneven reflection environments.

Design/methodology/approach

Through this bionic rail surface defect detection algorithm, the positioning and correction of the rail surface region can be computed from maximum run-length smearing (MRLS) and background difference. A saliency image can be generated to simulate the human visual system through some features including local grayscale, local contrast and edge corner effect. Finally, the meanshift algorithm and adaptive threshold are developed to cluster and segment the saliency image.

Findings

On the constructed rail defect data set, the bionic rail surface defect detection algorithm shows good recognition ability on the surface defects of the rail. Pixel- and defect-level index in the experimental results demonstrate that the detection algorithm is better than three advanced rail defect detection algorithms and five saliency models.

Originality/value

The bionic rail surface defect detection algorithm in the production process is proposed. Particularly, a method based on MRLS is introduced to extract the rail surface region and a multifeature saliency fusion model is presented to identify rail surface defects.

Details

Sensor Review, vol. 42 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 January 2016

Zhendong He, Yaonan Wang, Feng Yin and Jie Liu

When using a machine vision inspection system for rail surface defect detection, many complex factors such as illumination changes, reflection inequality, shadows, stains and rust…

Abstract

Purpose

When using a machine vision inspection system for rail surface defect detection, many complex factors such as illumination changes, reflection inequality, shadows, stains and rust might inevitably deform the scanned rail surface image. This paper aims to reduce the influence of these factors, a pipeline of image processing algorithms for robust defect detection is developed.

Design/methodology/approach

First, a new inverse Perona-Malik (P-M) diffusion model is presented for image enhancement, which takes the reciprocal of gradient as feature to adjust the diffusion coefficients, and a distinct nearest-neighbor difference scheme is introduced to select proper defect boundaries during discretized implementation. As a result, the defect regions are sufficiently smoothened, whereas the faultless background remains unchanged. Then, by subtracting the diffused image from the original image, the defect features will be highlighted in the difference image. Subsequently, an adaptive threshold binarization, followed by an attribute opening like filter, can easily eliminate the noisy interferences and find out the desired defects.

Findings

Using data from our developed inspection apparatus, the experiments show that the proposed method can attain a detection and measurement precisions as high as 93.6 and 85.9 per cent, respectively, while the recovery accuracy remains 93 per cent. Additionally, the proposed method is computationally efficient and can perform robustly even under complex environments.

Originality/value

A pipeline of algorithms for rail surface detection is proposed. Particularly, an inverse P-M diffusion model with a distinct discretization scheme is introduced to enhance the defect boundaries and suppress noises. The performance of the proposed method has been verified with real images from our own developed system.

Details

Sensor Review, vol. 36 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 January 2022

Ilesanmi Daniyan, Khumbulani Mpofu and Samuel Nwankwo

The need to examine the integrity of infrastructure in the rail industry in order to improve its reliability and reduce the chances of breakdown due to defects has brought about…

Abstract

Purpose

The need to examine the integrity of infrastructure in the rail industry in order to improve its reliability and reduce the chances of breakdown due to defects has brought about development of an inspection and diagnostic robot.

Design/methodology/approach

In this study, an inspection robot was designed for detecting crack, corrosion, missing clips and wear on rail track facilities. The robot is designed to use infrared and ultrasonic sensors for obstacles avoidance and crack detection, two 3D-profilometer for wear detection as well as cameras with high resolution to capture real time images and colour sensors for corrosion detection. The robot is also designed with cameras placed in front of it with colour sensors at each side to assist in the detection of corrosion in the rail track. The image processing capability of the robot will permit the analysis of the type and depth of the crack and corrosion captured in the track. The computer aided design and modeling of the robot was carried out using the Solidworks software version 2018 while the simulation of the proposed system was carried out in the MATLAB 2020b environment.

Findings

The results obtained present three frameworks for wear, corrosion and missing clips as well as crack detection. In addition, the design data for the development of the integrated robotic system is also presented in the work. The confusion matrix resulting from the simulation of the proposed system indicates significant sensitivity and accuracy of the system to the presence and detection of fault respectively. Hence, the work provides a design framework for detecting and analysing the presence of defects on the rail track.

Practical implications

The development and the implementation of the designed robot will bring about a more proactive way to monitor rail track conditions and detect rail track defects so that effort can be geared towards its restoration before it becomes a major problem thus increasing the rail network capacity and availability.

Originality/value

The novelty of this work is based on the fact that the system is designed to work autonomously to avoid obstacles and check for cracks, missing clips, wear and corrosion in the rail tracks with a system of integrated and coordinated components.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 3 May 2022

Junbo Liu, Yaping Huang, Shengchun Wang, Xinxin Zhao, Qi Zou and Xingyuan Zhang

This research aims to improve the performance of rail fastener defect inspection method for multi railways, to effectively ensure the safety of railway operation.

Abstract

Purpose

This research aims to improve the performance of rail fastener defect inspection method for multi railways, to effectively ensure the safety of railway operation.

Design/methodology/approach

Firstly, a fastener region location method based on online learning strategy was proposed, which can locate fastener regions according to the prior knowledge of track image and template matching method. Online learning strategy is used to update the template library dynamically, so that the method not only can locate fastener regions in the track images of multi railways, but also can automatically collect and annotate fastener samples. Secondly, a fastener defect recognition method based on deep convolutional neural network was proposed. The structure of recognition network was designed according to the smaller size and the relatively single content of the fastener region. The data augmentation method based on the sample random sorting strategy is adopted to reduce the impact of the imbalance of sample size on recognition performance.

Findings

Test verification of the proposed method is conducted based on the rail fastener datasets of multi railways. Specifically, fastener location module has achieved an average detection rate of 99.36%, and fastener defect recognition module has achieved an average precision of 96.82%.

Originality/value

The proposed method can accurately locate fastener regions and identify fastener defect in the track images of different railways, which has high reliability and strong adaptability to multi railways.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 2 December 2021

Jiawei Lian, Junhong He, Yun Niu and Tianze Wang

The current popular image processing technologies based on convolutional neural network have the characteristics of large computation, high storage cost and low accuracy for tiny…

395

Abstract

Purpose

The current popular image processing technologies based on convolutional neural network have the characteristics of large computation, high storage cost and low accuracy for tiny defect detection, which is contrary to the high real-time and accuracy, limited computing resources and storage required by industrial applications. Therefore, an improved YOLOv4 named as YOLOv4-Defect is proposed aim to solve the above problems.

Design/methodology/approach

On the one hand, this study performs multi-dimensional compression processing on the feature extraction network of YOLOv4 to simplify the model and improve the feature extraction ability of the model through knowledge distillation. On the other hand, a prediction scale with more detailed receptive field is added to optimize the model structure, which can improve the detection performance for tiny defects.

Findings

The effectiveness of the method is verified by public data sets NEU-CLS and DAGM 2007, and the steel ingot data set collected in the actual industrial field. The experimental results demonstrated that the proposed YOLOv4-Defect method can greatly improve the recognition efficiency and accuracy and reduce the size and computation consumption of the model.

Originality/value

This paper proposed an improved YOLOv4 named as YOLOv4-Defect for the detection of surface defect, which is conducive to application in various industrial scenarios with limited storage and computing resources, and meets the requirements of high real-time and precision.

Details

Assembly Automation, vol. 42 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 24 July 2023

Haonan Fan, Qin Dong and Naixuan Guo

This paper aims to propose a classification method for steel strip surface defects based on a mixed attention mechanism to achieve fast and accurate classification performance…

Abstract

Purpose

This paper aims to propose a classification method for steel strip surface defects based on a mixed attention mechanism to achieve fast and accurate classification performance. The traditional method of classifying surface defects of hot-rolled steel strips has the problems of low recognition accuracy and low efficiency in the industrial complex production environment.

Design/methodology/approach

The authors selected min–max scaling comparison method to filter the training results of multiple network models on the steel strip surface defect data set. Then, the best comprehensive performance model EfficientNet-B0 was refined. Based on this, the authors proposed two mixed attention addition methods, which include squeeze-excitation spatial mixed module and multilayer mixed attention mechanism (MMAM) module, respectively.

Findings

With these two methods, the authors achieved 96.72% and 97.70% recognition accuracy on the steel strip data set after data augmentation for adapting to the complex production environment, respectively. Using the transfer learning method, the EfficientNet-B0 based on MMAM obtained 100% recognition accuracy.

Originality/value

This study not only focuses on improving the recognition accuracy of the network model itself but also considers other performance indicators of the network, which are rarely considered by many researchers. The authors further improve the intelligent production technique and address this issue. Both methods proposed in this paper can be applied to embedded equipment, which can effectively improve steel strip factory production efficiency and reduce material and time loss.

Details

Robotic Intelligence and Automation, vol. 43 no. 4
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 2 March 2023

Kareem Mostafa, Tarek Hegazy, Robert D. Hunsperger and Stepanka Elias

This paper aims to use convolutional neural networks (CNNs) to provide an objective approach to classify deteriorated building assets according to the type and extent of damage…

Abstract

Purpose

This paper aims to use convolutional neural networks (CNNs) to provide an objective approach to classify deteriorated building assets according to the type and extent of damage. This research supports automated inspection of buildings and focuses on roofing elements as one of the most critical and externally distressed elements in buildings.

Design/methodology/approach

In this paper, 5,000+ images of deteriorated roofs from several buildings were collected to design a CNN system that automatically identifies and sizes roofing defects. Experimenting with different CNN formulations, the best accuracy is achieved using two-stage CNNs. The first-stage CNN classifies images into defect/no defect, while the second stage classifies the defected images according to the damage type. Based on the image classification, optimization is used to prioritize roof repairs by maximizing the return from limited rehabilitation funds.

Findings

The developed CNNs reached 95% and 97% accuracy for the first and second phases, respectively, which is higher than achieved in previous literature efforts. Using the proposed model to automate inspection and condition assessment activities proved to be faster than conventional methods. Repair/replace strategy for a case study of 21 campus buildings based on their condition and budgetary constraints was suggested.

Research limitations/implications

Future research includes testing different data acquisition technologies (e.g. infrared imaging), performing severity-based classification and integrating with BIM for defect localization.

Originality/value

This study provides an objective approach to automate asset condition assessment and improve funding decisions using a combination of image analysis and optimization techniques. The proposed approach is applicable toward other asset types and components.

Article
Publication date: 19 December 2023

Jinchao Huang

Single-shot multi-category clothing recognition and retrieval play a crucial role in online searching and offline settlement scenarios. Existing clothing recognition methods based…

Abstract

Purpose

Single-shot multi-category clothing recognition and retrieval play a crucial role in online searching and offline settlement scenarios. Existing clothing recognition methods based on RGBD clothing images often suffer from high-dimensional feature representations, leading to compromised performance and efficiency.

Design/methodology/approach

To address this issue, this paper proposes a novel method called Manifold Embedded Discriminative Feature Selection (MEDFS) to select global and local features, thereby reducing the dimensionality of the feature representation and improving performance. Specifically, by combining three global features and three local features, a low-dimensional embedding is constructed to capture the correlations between features and categories. The MEDFS method designs an optimization framework utilizing manifold mapping and sparse regularization to achieve feature selection. The optimization objective is solved using an alternating iterative strategy, ensuring convergence.

Findings

Empirical studies conducted on a publicly available RGBD clothing image dataset demonstrate that the proposed MEDFS method achieves highly competitive clothing classification performance while maintaining efficiency in clothing recognition and retrieval.

Originality/value

This paper introduces a novel approach for multi-category clothing recognition and retrieval, incorporating the selection of global and local features. The proposed method holds potential for practical applications in real-world clothing scenarios.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 8 May 2018

Chenggang Pan, Zizheng Ding, Qingming Chang and Jialin Zhou

Surface defects are often present on the surface of continuous casting slabs and rolled products. A lot of surface defects of hot rolled products are inherited from initial defects

Abstract

Purpose

Surface defects are often present on the surface of continuous casting slabs and rolled products. A lot of surface defects of hot rolled products are inherited from initial defects on continuous casting slabs. This work aims to trace the original surface defect during the whole heavy rail rolling and avoid black line surface defect that appears on the surface of heavy rail finial product.

Design/methodology/approach

Artificial round hole-shaped surface defects on the surface of continuous casting slab during the hot rolling of 60 kg/m heavy rail are analyzed experimentally and by means of explicit dynamic finite element method (FEM) and modified model rebuilding method.

Findings

The calculated results of surface defect locations of heavy rail finial product are in good agreement with the experimental ones. It is shown that the explicit dynamic FEM and modified model rebuilding method can be used effectively to predict the flow behavior of surface defects in the hot rolling of 60 kg/m heavy rail.

Originality/value

The three-dimensional finite element model for whole heavy rail rolling is built using explicit dynamic code and modified model rebuilding method. Flow behavior of black lines is studied in the 60-kg/m heavy rail rolling. The simulation results of six typical points are in good agreement with the experimental results.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 July 2020

Luiz Henrique Dias Alves, Tiago Carvalho Tepedino, Mohammad Masoumi, Gustavo Tressia and Helio Goldenstein

The purpose of this paper is to present the results of a metallurgical, mechanical and tribological characterization of the weld and heat-affected zone (HAZ) of aluminothermic…

Abstract

Purpose

The purpose of this paper is to present the results of a metallurgical, mechanical and tribological characterization of the weld and heat-affected zone (HAZ) of aluminothermic welding of premium rails used in heavy haul, looking into the origins of the squat defects associated with rail wear.

Design/methodology/approach

A full factorial design of experiment was carried out for 24 welds of premium and super premium rails. The factors studied were chemical composition, welding gap and preheating time. The welds were inspected visually and by ultrasound to detect superficial and internal defects and characterized by macrographic analysis, hardness profile, tensile tests and microstructural characterization in scanning electronic microscopy. Pin-on-disk test were carried out to compare the tribological behavior of the different regions of the weld rail.

Findings

Squat formation was shown to be associated with spheroidized pearlite regions formed on the HAZ of the welds, presenting near half the hardness of the weld metal. Thermal analysis showed that spheroidized pearlite is a result of partial austenitization at these positions. Tribological tests showed that low hardness regions presented smaller wear resistance than both the weld metal and the parent rail. Tensile test of the whole region resulted in brittle fracture along the weld metal.

Originality/value

The results showed that it is essential to reduce the dimensions of the HAZ and the width of the hardness drop area to mitigate squat formation in the HAZ edges.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0020/

Details

Industrial Lubrication and Tribology, vol. 72 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 585