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Abstract
Purpose – Effective rail surface defects detection method is the basic guarantee to manufacture high-quality rail. However, the existed visual
inspection methods have disadvantages such as poor ability to locate the rail surface region and high sensitivity to uneven reflection. This study
aims to propose a bionic rail surface defect detection method to obtain the high detection accuracy of rail surface defects under uneven reflection
environments.
Design/methodology/approach – Through this bionic rail surface defect detection algorithm, the positioning and correction of the rail surface
region can be computed from maximum run-length smearing (MRLS) and background difference. A saliency image can be generated to simulate the
human visual system through some features including local grayscale, local contrast and edge corner effect. Finally, the meanshift algorithm and
adaptive threshold are developed to cluster and segment the saliency image.
Findings – On the constructed rail defect data set, the bionic rail surface defect detection algorithm shows good recognition ability on the surface
defects of the rail. Pixel- and defect-level index in the experimental results demonstrate that the detection algorithm is better than three advanced
rail defect detection algorithms and five saliency models.
Originality/value – The bionic rail surface defect detection algorithm in the production process is proposed. Particularly, a method based on MRLS
is introduced to extract the rail surface region and a multifeature saliency fusion model is presented to identify rail surface defects.
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1. Introduction

Defects on rail surface are the major factors that affect the
manufacturing quality. Complex local grinding system is
developed to remove defects after scanning and distinguishing
products surface in the rail factory. Therefore, surface
inspection system plays a pivotal role in the rail manufacturing
process. Manual detection is inefficient, less sensitive and not
suitable for harsh production environments. Different from the
existing onlinemanual rail surface defect inspection system (Yu
et al., 2019; He et al., 2016), the manufacturing process
automatic nondestructive inspection system of rail products
faces the following problems: the harsh working environment,
the unsteady position of the rolling rail on the production line,
the random generation and distribution of defects and the
vibration rail transmission.
Nondestructive testing techniques such as ultrasonic (Cruz

et al., 2017), eddy current (Zhu et al., 2018) and computer
vision (Zhang et al., 2021; He et al., 2016) have been

developed. Ultrasonic testing cannot detect surface defects
and eddy current testing is sensitive to the vibration detection
environment (Zhang et al., 2021). In contrast, computer vision
inspection is more suitable for surface defect inspection because
of merits such as fast detection speed, high detection precision
and easy installation.
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More attention to the automatic nondestructive inspection
algorithms for rail manufacturing quality is paid based on
computer vision inspection in recent years. Current defect
detection algorithms can be divided into two categories: prior
knowledge and deep learning.
Some detection algorithms of specific image information can

be guided to locate defects based on prior knowledge. Yu et al.
(2019) presented row consistency, phase-only Fourier
transforms and pixel consistency to extract features of different
scales to identify defects. Gan et al. (2020) proposed a
background-oriented defect inspection to improve defect
detection by considering specified characteristics of the rail
during the inspection. However, some special constraints on
the number and uniformity of images in the data set must be
satisfied. Further concern for image enhancement strategies
was obliged to reinforce the distinction between defects and
backgrounds (Li and Ren, 2012; He et al., 2016). Li and Ren
(2012) introduced the local normalization method for image
enhancement and proposed a projection profile algorithm to
identify possible defects, although the prediction result is only a
bounding box. In He et al.’s (2016) work, the Perona–Malik
diffusion model was presented for defect boundary enhancement
and noise suppression and a nearest-neighbor difference scheme
was designed to select proper defect boundaries. Morphological
operations are often used in rail inspection systems (Nieniewski,
2020; Min et al., 2018). Nieniewski (2020) presented a rail
defect detection system and shape extraction method using
morphological pyramid. By considering the geometric features
of defects, morphological processing was applied to remove
the interference of redundant information, and the direction
chain code was used to identify the defect shape feature (Min
et al., 2018). The method in Niu et al.’s (2021) work is
proposed based on the bi-level super pixel-based framework
and bag-of-words feature extractor. Ni et al. (2021) discussed a
novel defect detection algorithm based on a partitioned edge
feature. In Zhang et al.’s (2018) work, a curvature filter was
embedded to retain relevant details and eliminate noise.
Furthermore, an improved fast and robust Gaussian mixture
model based on Markov random field was established for
surface defect segmentation. Although it has high accuracy
and strong robustness, the computation complexity is high and
not conducive for implementation.
Although prior knowledge-based detection algorithms are

easy to implement without the training process, most of them
are proposed for rail surface defect online detection and verified
using the publicly available rail surface discrete defect (RSDD)
data set. The difference between railway images will limit the
application scenarios of the algorithm, which makes the prior
knowledge-based detection algorithms not suitable for rail
manufacturing process.
Recently, some deep learning methods have been proposed

for rail surface defects detection. Deep learning detection
algorithm has an advantage to automatically extract features
based on training samples. A deep neural network (Faghih-
Roohi et al., 2016) is applied for defect detection and
classification using convolution layers to extract suitable
features. In Jin et al.’s (2020) work, amultimodel rail inspection
system is established for surface defect where fast and robust
spatially constrained Gaussian mixture model (FRGMM) is
presented for segmentation proposal and Faster RCNN is used

for objective location in a parallel structure. Zhang et al. (2021)
proposed a limited sample rail surface defects detection scheme
using line-level label. This scheme regarded defect images as
sequence data and classified pixel lines with neural networks to
solve the problem of a small number of defect images, but only
the y-direction position of the defect can be computed. Liang
et al. (2018) proposed a deep convolution neural network of the
SegNet architecture to detect the surface defects of rails. Yuan
et al. (2019) designed a novel network to classify and locate
defects based on MobileNetV2 and ensures real time by
multiscale defect detection.
The deep learning-based algorithms have excellent fitting

capabilities with large number of training samples. There are
two difficulties in sample collection; first, it is difficult to collect
samples due to the small number of defects and the harsh
environment, which takes a lot of manpower and time, and
second, pixel-level labeling requires specialized knowledge of
the rail manufacturing process and certain computer skills.
The human visual nervous system can quickly find

interesting objects in complex scenes. This selective visual
ability is called the visual attention mechanism. The saliency
algorithm is an important solution path to simulate the human
visual mechanism to find prominent objects. Itti et al. (1998)
proposed a visual saliency model based on the cognitive
psychology theory of Koch and Ullman (1987). Liu et al.
(2011) formally aimed at the saliency object detection task and
introduced the visual attention mechanism into the object
segmentation task.
Subsequently, a large number of saliency algorithms such as

AC (Achanta et al., 2008), frequency-tuned (FT) (Achanta
et al., 2009), LC (Zhai and Shah, 2006) and HC (Cheng et al.,
2014) were proposed. Because of good anti-interference ability
in the field of defect identification, the saliency algorithm has
been widely used in various surface defect detection systems.
For example, FT (Achanta et al., 2009) and ITTI (Itti et al.,
1998) models can be used for steel strip surface inspection
(Song and Yan, 2013; Guan, 2015; Song et al., 2014) and AC
(Achanta et al., 2008) models for welding inspection (Ben
Gharsallah and Ben Braiek, 2015). In the field of rail defect
detection, Hu et al. (2018) created the block local contrast
measure (BLCM) saliency model to detect the peeling of the
rail surface. To improve the accuracy and efficiency of defect
identification in the rail manufacturing process, a bionic rail
surface defect detection algorithm based on the multifeature
saliency fusion is investigated in this paper.
The remaining of this paper is organized as follows. Section 2

gives details of the proposed model. Section 3 evaluates the
performance of the method through experiment and
comparison. Section 4 provides the conclusions.

2. Proposed method

2.1 Overview
The rail blank will be rough ground after roll forming. This
process will be performed to achieve high precision surface to
remove some surface discrete defects such as rolling scar,
scratches and oxide skin.
During the vibrating movement of the rail on the production

line, the position of the camera relative to the rail cannot be
guaranteed to be constant; three categories can be divided in
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those sampled rail images: the rail is not in the center of the
image, the rail is inclined and the camera is not perpendicular
to the rail, as shown in Figure 1. Because the curvature shape of
the rail surface does not reflect light uniformly, the rail surface
region has alternating light and dark stripes. Various defects are
randomly formed on the rail surface during the production
process. The rail surface image has the following characteristics:
� The rail position is not fixed.
� The rail surface partially has oversaturated regions.
� The defect-free area of the rail surface has a complex

texture.

Traditional machine image processing methods based on global
brightness or edge detection cannot accurately extract surface
defects. When the human vision system is dealing with complex
information, it will quickly focus on the important areas with larger
saliency value and allocate limited neural computing resources to
the key parts of the scene. Saliency detection is to simulate the
human visual attention mechanism through the establishment of a
suitable calculation model to get the results consistent with human
visual cognition. The defect area is only a small part of the rail
surface and the saliency value of the discrete defects of the rail is
higher. The human eye can quickly identify the defect area, so the
saliency detectionmethod can be implemented to detect the surface
defect of the rail. For the special situation of the rail surface, three
image saliency features are proposed to identify rail surface defects:
� Local grayscale feature, the pixel value of the defect is

lower than surroundings.
� Local contrast feature, the defect color is distinguishable

from the surroundings.
� Edge corner effect, the color changes of defect edges and

corners are very dramatic.

Huang et al. (2020) introduced the above three features and
background texture feature into a neural network to detect the
surface defects of themagnetic tile.
In this paper, the maximum run-length smearing (MRLS)

algorithm is improved to locate the rail surface region, and
a preprocessing algorithm is proposed to correct uneven
reflection of rail images based on background difference. The
rationality of applying above features to rail surface defects is
discussed, and the corresponding saliency images are generated
with three saliency features. Defects are identified by features
fusion, meanshift clustering and adaptive threshold segmentation.
The pipeline image of the algorithm is shown in Figure 2.

2.2 Target region location based onmaximum run-
length smearing
Rail images obtained by cameras usually contain irrelevant
surrounding region which should be eliminated to avoid
interference. Therefore, the rail surface region in the image
should be located before defect detection. The MRLS
algorithm is improved to achieve rail surface region precise
position in the image from the production line.
The run-length is a continuous area with the same pixel value

in the same row (or column) in the image. As shown in Figure 3,
run-length smearing is defined as the black run-length between
two white pixels is replaced with a white run-length when its
length is less than a threshold len.
The flowchart of rail surface region location algorithm based

on MRLS is shown in Figure 4. As shown in Figure 4(a), the
ideal value of each row of rail surface region is a continuous
white run-length when the original image is binarized. But
white run-length is often interrupted by noise, defects and
uneven reflection, forming a black run-length as shown in
Figure 4(b). Each row in the image is scanned and replaced,
completing the run-length smearing.
The white run-length of the rail surface region can be

connected as a whole by run-length smearing while not
including irrelevant areas. But the black run-length between the
rail surface and the rail bottom is easily smeared to the rail
surface region, which will cause misidentification. This black
run-length is much longer than the black run-length in rail

Figure 2 Pipeline image of the algorithm

Figure 3 Principle diagram of maximum run-length smearing

Figure 1 Examples of rail surface images
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surface region, so the value of the threshold len is adjustable
with the change of environment. In the Figure 4(c), len is set to
0.8 times the distance from the rail surface to the bottom of the
rail. It can be seen that the rail bottom in the irrelevant area is
identified, but its area is smaller than the rail surface region. So
nonmaximum suppression (NMS) is performed on the image,
and only the white run-length with the longest length of each
row is retained. The results obtained after NMS are shown in
Figure 4(d). The boundaries of rail surface are clearly visible,
which could be recognized via Sobel edge detection and Hough
transformation. Note that to remove lateral edge interference,
we only use a single direction Sobel detection operator.

2.3 Preprocessingmethod of rail surface image
2.3.1 Distortion correction of rail surface image
According to the characteristics of approximately flat rail surface,
the image is corrected by perspective transformation. The
perspective transformation maps the points in the coordinate
system to a new coordinate system. The transformation function
is defined by:

u
v
w

2
4

3
5 ¼

a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5 x

y
1

2
4

3
5; (1)

where x and y are the pixel coordinates before transformation
and u, v and w are the corresponding coordinates after
transformation. Perspective transformation matrix has just
eight degrees of freedom, so let a33 = 1. The remaining eight
parameters in the transformation matrix, a11, a12, a13, a21, a22,
a23, a31 and a32, can be solved according to the four vertices
corresponding to the image before and after the transformation.
The vertices of the quadrilateral detected by MRLS are taken
as the initial coordinates. The vertices of the target rectangle are
taken as target coordinates. The correction result is shown in
Figure 5.

2.3.2 Uneven reflection correction of rail surface image
The recognition result of the algorithm will be affected by
uneven reflection, so the illumination correction is performed
on the rail surface image. Background difference method is a
widely used approach for detecting moving objects from static
cameras. The rationale in the approach is that of detecting the
moving objects from the difference between the current frame
and a reference frame, often called the “background image”
(Piccardi, 2004). Background image is obtained by learning

temporal sequence of the frames. To highlight defects and
reduce the influence of uneven light reflection, the background
image is subtracted from the rail surface image to obtain a
corrected image. Only one image can be taken for each area of
the rail surface during the movement of the rail, so the
background difference method cannot be directly used for rail
background modeling. The rail surface image has the feature of
small pixel value changes along the rail direction, which can
be used to construct a background image. The direction
perpendicular to the rail is defined as the x-axis, and the
direction along the rail is defined as the y-axis. The background
image is defined as:

Im x; yð Þ ¼
Xh
y¼1

I x; yð Þ
h

; x 2 1;w½ �; (2)

where Im (x, y) is the background image, I (x, y) the input
image, h is the height of the image and w is the width. The
difference correction image is generated by subtracting the
background image from the rail surface image. The difference
correction image is defined as:

DI x; yð Þ ¼ I x; yð Þ � Im x; yð Þ; (3)

where DI (x, y) is the differential correction image. The results
in Figure 6(c) show that the influence of uneven reflection is
corrected to a certain extent while the defects are retained.

2.4Multifeature saliency fusion defect detectionmethod
2.4.1 Local grayscale feature
The human visual system is very sensitive to pixels with
outliers. The occurrence of defects will change the geometry of
the rail surface, resulting in changes in the diffused reflection of
light. Therefore, the pixel value of defect pixels is usually less
than that of nondefect pixels. According to some qualitative
differences between the defect characteristics and its
background, the adaptive binarymethod can be used to identify
the defect area, which is defined as:

SD x; yð Þ ¼ 1; IR x; yð Þ � DI x; yð Þ > t
0; IR x; yð Þ � DI x; yð Þ � t ;

�
(4)

where IR(x, y) is a mean filter blurred image of the difference
correction image DI in a R � R blur window. The pixel value
range of the corrected image is 0–255, so we define t as a

Figure 4 Flowchart of rail surface region location algorithm based on
MRLS

Figure 5 Distortion correction of rail surface image
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constant value in the range of 0–255. It can be deduced from
equation (4) that when the pixel value is significantly different
from its surrounding pixels, effective defect identification can
be achieved. The local grayscale feature saliency image is
shown in Figure 6(d).

2.4.2 Local contrast feature
The color of defect is distinguishable from the surroundings in
a local area, so the AC (Achanta et al., 2008) saliency model is
selected to locate the defect location. This algorithm defines
saliency as the local contrast of a pixel relative to its
surrounding regions on different scales. The saliency value is
obtained by calculating the Euclidean distance between the
central pixel and the mean of the surrounding regions. The
calculation function is defined as:

SAC x; yð Þ ¼ 1
3

FW
2

x; yð Þ1FW
4

x; yð Þ1FW
8

x; yð Þ
" #

Ft x; yð Þ ¼ d c x; yð Þ; st x; yð Þ½ �
;

(5)

where Ft (x, y) is defined as a Euclidean distance d between the
Lab pixel vector c (x, y) (center) and the average Lab pixel
vector st (x, y) in window t (surround). The square surround
region is varied as t = {W/2, W/4, W/8}. W is the smaller pixel
size of the two dimensions of the image. The local contrast
feature saliency image is shown in Figure 6(e).

2.4.3 Edge corner effect
The above two features can effectively identify the defect area,
but the accuracy of the defect edge recognition is not exact
because the defects edge area is close to the background. Rail
surface defects and the nondefect region form a strong edge
corner response due to the drastic change in reflected light.
The human visual system is easily attracted by the more
differentiated edges. Therefore, a Strukturtensor (ST) can be

introduced to improve the accuracy of defect edge recognition.
The ST of the image is defined as:

M ¼ A B
B C

� �
¼ IXIX IXIY

IXIY IYIY

� �
; (6)

where IX and IY are gradient image of the two dimensions of
original image, respectively. Let l 1 and l 2 be two eigenvalues
of M, respectively. Harris (Harris and Stephens, 1988) proved
that, edge responses will occur when one eigenvalue is large
while the other one is small, and corner responses happen if and
only if both eigenvalues are large. Using l 1 and l 2 directly as
the edge corner effect will greatly increase the computational
difficulty, so let D = (l 1 � l 2)

2 be used to represent the edge
information and let E = jl 1 1 l 2j be used to represent the
corner information. Then with equation (6), we get:

D ¼ A� Cð Þ2 1B2

E ¼ A1C
(7)

The edge corner effect SST is defined as:

SST ¼ D1E (8)

When a pixel is in the edge region with a large pixel value
change, it will be given a higher saliency value. The edge corner
effect image is shown in Figure 6(f).

2.4.4 Feature fusion algorithm for rail surface defects images
Image pixel-wise addition can complement the shortcomings
between different feature images. Image multiplication can
only enhance the areas with higher saliency values in both
images and suppress the areas with lower saliency values.
Combining the feature fusion method (Huang et al., 2020), the
feature fusion function is defined by:

S ¼ SD 11ð Þ � SAC 1SSTð Þ; (9)

where SD, SAC and SST, respectively, represent saliency images
of local grayscale feature, local contrast feature and edge corner
effect. For consistency with different features, all saliency
values are scaled to the range of 0–1 bymin-max normalization.
S is the final saliencymap.
The defect area can be correctly identified with the local

grayscale feature and the local contrast feature, but some
nondefective areas also have higher saliency values. Edge
corner effect can effectively identify the edge part in the image.
The saliency value of the nondefective area in the local
grayscale feature is zero, which will invalidate the other features
in the pixel multiplication. Therefore, the value of SD is
incremented by 1. Figure 6(g) is the final fusion saliency image.
Themultiplication of pixels makes the region with high saliency
value of multiple features be highlighted. The high saliency
region in the final saliency image is closer to the real defect area.

2.4.5 Image segmentation
Meanshift (Comaniciu and Meer, 2002) clustering is a well-
established algorithm that has been applied successfully in image
processing and computer vision. Cluster centers are derived by
local mode seeking identifying maxima in the normalized density
of the image. Through the meanshift clustering, the original pixel

Figure 6 Examples of preprocessed images and saliency images
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value is replaced by the pixel value of the clustering center. Thus,
the local similar texture in the image is removed, and the features
with large differences such as edges are retained.
To segment the defect area in the cluster image, define the

Niblack (He et al., 2016) thresholdTH:

TH ¼ mS 1 k � d S (10)

where mS and d S are the mean and variance of the saliency
image S, respectively, and k is a control coefficient. The defect
recognition performance can be controlled by adjusting the
parameter k value, the final images are demonstrated in
Figure 6(h) after clustering withmeanshift algorithm.

3. Evaluation

3.1 Data set
3.1.1 RSDDS-126 data set
Under laboratory conditions, an automatic grinding platform is
built to simulate the production environment. The data set
samples are taken from an actual industrial production line of one
section-steel factory. The experimental equipment is shown in
Figure 7. The essential equipment is a Yuanqi charge coupled
device (CCD) camera with a resolution of 1,280 � 1,024 pixels.
The lens is mounted vertically downwards, and an light-emitting
diode (LED) light source controlled by the software reduces the
effect of natural light variation on imaging quality. The resolution
of one pixel is 0.19 � 0.19 mm2. In total, 126 images with
resolution of 1,280 � 1,024 were captured by CCD camera to
form RSDDS-126 data set. All defects are visually labeled. Note
that defects with area less than 15 mm2 can be ignored according
to the requirements of rail production process.

3.1.2 Rail surface discrete defect data set
The RSDD is a public railway image data set, which is mainly
composed of grayscale images captured from express rails and
heavy haul rails, including two subdata sets: Type I and Type
II. the Type I RSDD data set contained 67 challenging images
acquired from express rails and the Type II RSDD data set
contained 128 challenging images acquired from ordinary/
heavy haul rails. Each surface image contained one or more
defects that were difficult to identify owing to the noisy
backgrounds. These defects included squats at different levels
and other related damages produced by rolling contact fatigue.

3.2 Rail surface region location experiment
To verify the accuracy of the proposed rail surface location
algorithm, intersection over union (IoU) is applied to evaluate the
algorithm.MRLSmethod is comparedwith two classic algorithms
of Hough detection method (Hu et al., 2018) and the track
extraction based on projection profile (TEBP) (Li and Ren, 2012)
method. Hough detection method detects the line of rail edge to
locate the rail surface region, and the TEBP (Li and Ren, 2012)
method used the characteristics of the rail surface and the
irrelevant surrounding area to have different pixel average values
along the rail direction to segment the target region.The results are
illustrated in the Figure 8 andTable 1. The location results formed
byMRLSmethod aremost similar to the real boundary of the rail.
The Hough detection method will identify irrelevant areas due to
the influence of uneven reflection and the edges of the rail bottom.
Due to the limitation of the principle, TEBP method is only
effective when the rail is vertical. The edge of the rail surface
cannot be positioned when the rail is inclined or
the camera is not vertical to the rail surface.MRSLmethod has the
highest IoUvalue and the strongest robustness.

3.3 Testing experiment of rail surface defect
For a comprehensive assessment, pixel-level index (precision,
recall and F-measure) and defect-level index (precision0,
recall0, F0-measure) are the important factors to evaluate the
experimental results of RSDDS-126 and RSDD data set (Yu
et al., 2019). Precision reflects information on how many
generated masks are true defects among all the detections.
Recall reveals information on how many defects were detected
among all the defects. The F-measure is a criterion, which tries
to capture both precision and recall in a single number.

Figure 7 Automatic rail grinding platform

Figure 8 Examples of recognition results using three target region
location algorithms
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3.3.1 RSDDS-126 data set
In defect recognition, both t in equation (4) and k in equation (10)
directly determine the precision of defect recognition. If
t and k are too high, more defect information will be filtered
out and the number of missing defects will increase. On the
contrary, if t and k are too small, noise will be generated and
the number of false detection of defects will increase. A
balance between precision and recall should be established.
The algorithm has the best comprehensive performance when
F-measure is the largest. Figure 9 shows the F-measure of
defect identification under different t and k values. Reported
values are average values for the whole data set. The best
F-measure can be achieved when t= 53 and k= 3.5.
The determined parameters were obtained to identify the

RSDDS-126 data set, and the results were shown in Figure 10.
In the saliency image as show in Figure 10(c), all defect areas
are visible and have high saliency value. Large-scale defects that
pose a potential threat to the rails are identified in the binary
image as shown in Figure 10(d).
The experiments have been performed to compare the effects

among BLCM (Hu et al., 2018), P-M (He et al., 2016), local
normalization (LN) 1 defect localization based on projection
profile (DLBP) (Li and Ren, 2012) and the presented detection
algorithm in this paper. The results in Figure 10(e)–(g) depict
some examples of the detection results of three methods. The
defect area smaller than 15mm2 has been removed. The detection
results of BLCM are poor. A large number of overextracted
regions and underextracted regions are produced. The edge of
defects detected by P-M will break, so the defect region cannot be
explicitly found. And the edge area of the rail is erroneously
extracted due to the uneven reflection. LN 1 DLBP cannot
identify the contours of defects and will give false positives when
the illumination is uneven along the rail. The evaluation indexes
are compared in Table 2. Because P-M and LN1 DLBP cannot
accurately detect the contours of the defects, only the defect-level
index is evaluating indicator. The results shows that six metrics of
the bionic algorithmare better than other algorithms.

Five classical saliency models were compared on the RSDD-126
data set. It includes three models which use global color rarity,
such as FT (Achanta et al., 2009), LC (Zhai and Shah, 2006)
andHC (Cheng et al., 2014). Besides, other twomodels can also
be compared, such as ITTI (Itti et al., 1998) and BMS (Zhang
and Sclaroff, 2016), which use visual attention mechanism. The
evaluationmetrics is shown in Table 3. It can be ascertained that
ourmethod is better than other saliencymodels.

Table 1 Experimental results of three target region location algorithms

Approach Rail is not in the center (%) Rail is inclined (%) Camera is not perpendicular (%) Total (%)

MRSL 99.14 99.41 99.20 99.24
Hough detection 46.44 86.80 65.22 65.51
TEBP 98.82 80.05 93.77 91.18

Figure 9 Effect of different t and k value on algorithm performance
index

Figure 10 The sample defect images and inspection results of different
methods from RSDDS-126 data set
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3.3.2 Rail surface discrete defect data set
We again evaluate the dependency on the parameter t and k.
The appropriate parameter is selected using the same way as
that in RSDDS-126 data set. The results of the RSDD data
set are shown in Figure 11 and the evaluation metrics of
comparison are shown in Tables 4 and 5. It can be ascertained
that our method is better than other algorithms in Type-II. In
Type-I, LN1DLBP had the best detection result, but the F0 of
the four testedmethods were all low.

3.3.3 Failure case analysis
The bionic algorithm in this paper cannot detect some special
defects in the data set. Several reasons leading to poor
performances are as follows:

� Defects with low saliency values. The saliency values of
some special defects in dark background are lower than
that in bright background; when the brightness of the
background changes greatly, only defects in bright
background can be identified.

� Background interference. Some surfaces have features
similar to defects, resulting in invalid saliency image.

� Minor defects. Black spots in the rail background are
identified as defects, but the areas of these defects are
small. They can be removed with area filtering.

Some examples of failure cases are shown in Figure 12. Each
column in Figure 12(a)–(c) from left to right is: original images,
ground truth, saliency images and binary images. Reason (a) and
(b) are the main reasons for the poor performance of the
algorithm on Type-I RSDD data set. But the above phenomena
will rarely happen in the railwaymanufacturing process.

3.4 Ablation study
The core features of the saliency algorithm are the local
grayscale feature and the local contrast feature because they can
all obtain the whole saliency image of the defects image. To
compare the effect of single feature, the saliency images of the
above two features are segmented and evaluated by the same
postprocessing method on the RSDDS-126 data set. The
algorithm verification image and evaluation metrics are shown
in Figure 13 and Table 6. Blue areas represent overextracted
regions and green areas represent underextracted regions.
When recognizing defects with only single feature, more false

positives are generated, so Pre and Pre0 are lower. As shown
in the red rectangle in Figure 13(b) and (c), part of the
overextracted regions and underextracted regions are eliminated
after feature fusion, which verifies the rationality of the feature
fusion method. The evaluation metrics after removing the edge
corner effect are also shown in Table 6. It can be seen that
the edge corner effect can slightly improve the detection effect.
The fusion feature has the highest F and F0, both of F and F’
reach 76.53% and 88.07%, respectively, which shows that all of
three features in the bionic algorithm are necessary.

Table 2 Experimental results of different methods on the RSDD-126 data set

Approach Pre (%) Rec (%) F (%) Pre0 (%) Rec 0 (%) F 0 (%)

Our method 69.83 86.42 76.53 85.71 90.57 88.07
BLCM 40.68 26.68 20.48 34.12 19.81 25.07
P-M – – – 12.83 63.68 21.35
LN1 DLBP – – – 55.73 70.80 62.36

Table 3 Experimental results of different saliency models on the RSDD-
126 data set

Approach Pre (%) Rec (%) F (%) Pre0 (%) Rec 0 (%) F 0 (%)

ITTI 73.62 73.92 72.15 78.66 85.38 81.88
FT 60.64 88.16 69.52 66.78 91.51 77.21
LC 50.66 84.68 62.32 66.90 91.98 77.45
HC 50.15 86.52 62.14 61.86 89.15 73.04
BMS 39.69 53.31 43.72 60.08 46.70 52.55

Figure 11 The results of different methods for the Type I (a) and Type II
(b) of RSDD data set. From left to right, each column in (a) and (b) is:
original image, ground truth, ours, BLCM, PM and LN1 DLBP

Table 4 Experimental results of different methods on the Type-I RSDD
data set

Approach Pre (%) Rec (%) F (%) Pre0 (%) Rec 0 (%) F 0 (%)

Our method 37.37 43.30 36.34 76.00 25.55 38.24
BLCM 16.97 26.47 18.59 5.41 25.55 8.92
P-M – – – 36.96 12.41 18.58
LN1 DLBP – – – 56.18 39.42 46.33

Table 5 Experimental results of different methods on the Type-II RSDD
data set

Approach Pre (%) Rec (%) F (%) Pre0 (%) Rec 0 (%) F 0 (%)

Our method 61.27 64.36 59.28 86.55 71.82 78.50
BLCM 15.17 16.90 11.25 3.35 10.50 5.08
P-M – – – 11.55 40.33 17.96
LN1 DLBP – – – 86.92 61.14 71.79
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4. Conclusion

A bionic rail surface defect detection algorithm applied in the
production process is proposed in this paper. According to the
characteristics of rail surface defect images, a rail surface region
positioning algorithm based on MRLS and a light correction
algorithm based on background difference are proposed. The
fusion saliency image can be generated with local grayscale
feature, local contrast feature and edge corner effect, and then
be clustered and segmented with meanshift algorithm to obtain
accurate defect location and contour information. On the
RSDDS-126 data set, pixel-level index and defect-level index
are the important factors to evaluate the effectiveness of several
models. Two indexes of F and F0 reach 76.53% and 88.07%,
respectively, which exceed the existed three advanced methods

and five saliency models. Experimental results indicate that the
algorithm can effectively identify surface defects in railway
manufacturing process. Furthermore, the bionic algorithm is
tested on the public railway image data set (RSDD data set)
and several failure reasons are analyzed. Finally, the ablation
experiment verifies that the detection ability of a single feature
is lower than that of the fusion feature, which proves the
necessity of three saliency features.
It is worth noting that the method in this paper is only

suitable for locating rail surface defects, more research is
needed to determine the defect attributes. Therefore, the defect
classification will be studied in the future to provide more
detailed defect information for the grinding process.
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