Search results

1 – 10 of over 2000
Article
Publication date: 3 June 2022

Xianghong Fan, Yuting He and Tao Chen

Flexible eddy current array (FECA) sensor is flexible and light in weight, which has broad application prospects in structural health monitoring. But, the sensor’s sensing channel…

Abstract

Purpose

Flexible eddy current array (FECA) sensor is flexible and light in weight, which has broad application prospects in structural health monitoring. But, the sensor’s sensing channel number is more, increasing the added mass of sensor networks. This paper aims to reduce the sensing channel number by changing the sensing coil layout.

Design/methodology/approach

In this paper, FECA sensors with series sensing coil (SSC) layout and interactive sensing coil (ISC) layout are proposed, which reduce the number of sensor’s channels by half. Then, the variation of the output signal of the sensor when the crack expands along both sides of the hole is analyzed by simulation model. Finally, the fatigue crack monitoring experiment is carried out.

Findings

For the SSC layout, the simulation results show that the amplitude of each SSC group of the sensor increases when the crack propagates to the left or right. For the ISC layout, when the crack propagates on the right side of bolt hole, the induced voltage of each ISC group decreases. When the crack propagates on the left side of bolt hole, the induced voltage of each ISC group increases. The experiment results are consistent with simulation results, which verifies the correctness of simulation model. Compared with SSC layout, the ISC layout can judge the crack propagation direction. And the crack monitoring accuracy is 1 mm.

Originality/value

The research results provide a certain reference for reducing the number of sensor’s sensing channels. Results of the simulation and experiment show that the ISC layout can judge the crack propagation direction, and the crack monitoring accuracy is 1 mm.

Details

Sensor Review, vol. 42 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 June 2019

Chao Liu, Mingyang Yang, Haoyu Han and Wenping Yue

To study fracture characteristics of jointed rock masses under blasting load, the RFPA2D analysis software for dynamic fracture of rocks based on the finite element method and

Abstract

Purpose

To study fracture characteristics of jointed rock masses under blasting load, the RFPA2D analysis software for dynamic fracture of rocks based on the finite element method and statistical damage theory was used.

Design/methodology/approach

On this basis, this research simulated the fracture process of rock masses in blasting with different joint geometrical characteristics and mainly analysed the influences of distance from joints to blasting holes, the length of joints, the number of joints and joint angle on fracture of rock masses.

Findings

The calculation results show that with the constant increase of the distance from joints to blasting holes, the influences of joints on blasting effects of rock masses gradually reduced. Rock masses with long joints experienced more serious damages than those with short joints. Damages obviously increased with the changing from rock masses without joints to rock masses with joints, and when there were three joints, the further increase of the number of joints had unobvious changes on blasting effects of rock masses. Joints showed significant guidance effect on the propagation of cracks in blasting: promoting propagation of main vertical cracks deflecting to the ends of joints.

Originality/value

The research results are expected to provide some theoretical bases in practical application of engineering blasting.

Details

Engineering Computations, vol. 36 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 May 2023

Xianghong Fan, Tao Chen and Yuting He

This paper aims to study the influence of different reinforcement methods on crack monitoring characteristics of eddy current array sensors, and the sensors with two different…

Abstract

Purpose

This paper aims to study the influence of different reinforcement methods on crack monitoring characteristics of eddy current array sensors, and the sensors with two different reinforcement methods, SUS304 reinforcement and permalloy reinforcement, are proposed.

Design/methodology/approach

First, the finite element model of the sensor is established to analyze the influence of the reinforcement plate’s electromagnetic parameters on the crack identification sensitivity. Then, the crack monitoring accuracy test of sensors with two reinforcement methods is carried out. Finally, the fatigue crack monitoring experiments with bolt tightening torques of 45 and 63 N · m are carried out, respectively.

Findings

In this study, it is found that the crack identification sensitivity of the sensor can be improved by increasing the relative permeability of the reinforcement plate. The crack monitoring accuracy of the sensors with two different reinforcement methods is about 1 mm. And the crack identification sensitivity of the sensor reinforced by permalloy reinforcement plate is significantly higher than that of the sensor reinforced by SUS304 reinforcement plate.

Originality/value

The sensor reinforced by reinforcement plate can work normally under the squeezing action of the bolt, and the crack monitoring sensitivity of the sensor can be significantly improved by using the reinforcement plate with high relative permeability.

Article
Publication date: 22 July 2022

Ying Tao Chai and Ting-Kwei Wang

Defects in concrete surfaces are inevitably recurring during construction, which needs to be checked and accepted during construction and completion. Traditional manual inspection…

Abstract

Purpose

Defects in concrete surfaces are inevitably recurring during construction, which needs to be checked and accepted during construction and completion. Traditional manual inspection of surface defects requires inspectors to judge, evaluate and make decisions, which requires sufficient experience and is time-consuming and labor-intensive, and the expertise cannot be effectively preserved and transferred. In addition, the evaluation standards of different inspectors are not identical, which may lead to cause discrepancies in inspection results. Although computer vision can achieve defect recognition, there is a gap between the low-level semantics acquired by computer vision and the high-level semantics that humans understand from images. Therefore, computer vision and ontology are combined to achieve intelligent evaluation and decision-making and to bridge the above gap.

Design/methodology/approach

Combining ontology and computer vision, this paper establishes an evaluation and decision-making framework for concrete surface quality. By establishing concrete surface quality ontology model and defect identification quantification model, ontology reasoning technology is used to realize concrete surface quality evaluation and decision-making.

Findings

Computer vision can identify and quantify defects, obtain low-level image semantics, and ontology can structurally express expert knowledge in the field of defects. This proposed framework can automatically identify and quantify defects, and infer the causes, responsibility, severity and repair methods of defects. Through case analysis of various scenarios, the proposed evaluation and decision-making framework is feasible.

Originality/value

This paper establishes an evaluation and decision-making framework for concrete surface quality, so as to improve the standardization and intelligence of surface defect inspection and potentially provide reusable knowledge for inspecting concrete surface quality. The research results in this paper can be used to detect the concrete surface quality, reduce the subjectivity of evaluation and improve the inspection efficiency. In addition, the proposed framework enriches the application scenarios of ontology and computer vision, and to a certain extent bridges the gap between the image features extracted by computer vision and the information that people obtain from images.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 February 2006

Y.Z. Chen and X.Y. Lin

In plane elasticity, a general expression for a mutual work difference integral (MWDI) derived from two stress fields is introduced. Once two physical stress fields are known…

Abstract

In plane elasticity, a general expression for a mutual work difference integral (MWDI) derived from two stress fields is introduced. Once two physical stress fields are known beforehand, the relevant MWDI can be evaluated exactly from the coefficients in the complex potentials. A biaxial tension model for evaluating defect energy is introduced. A particular MWDI from two fields, one is for the damaged medium under remote biaxial tension and other is for an infinite perfect plate under the same remote biaxial tension, can be defined as a suitable measure of stiffness for the damaged medium, which is called the defect energy ( E (a) ). The suggested model can deal with the cracks, holes, and elastic inclusions in a unique way. The model can also evaluate the defect energies for different damages exactly without dependence on the orientation of damages. Physically, the higher is the defect energy achieved, the more are the involved damages in the medium. The defect energy may be negative, which means a more rigid inclusion is included in the medium. For 3D‐elasticity, a triaxial tension model is introduced for evaluating the defect energy for the damaged medium. For some particular cases, for example, the dissimilar elastic spherical inclusion, or the elliptic flat crack, the relevant defect energies are evaluated.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 2007

Amir Hossein Kohsary, Mohammad Fatehi Marji and Hasan Hosseini Nasab

This paper describes progress on the development of theoretical models required for studying failure mechanism, crack initiation and growth around the boreholes driven by…

Abstract

This paper describes progress on the development of theoretical models required for studying failure mechanism, crack initiation and growth around the boreholes driven by hydrofracturing processes in Hot Dry Rock (HDR) reservoirs of geothermal energy. Due to the importance of the stress intensity factor concept (K) in Fracture Mechanics, some advanced modeling techniques for accurate and fast determination of K for relevant problems are proposed. Alternative tools to deal with stress intensity factor determination are developed and assessed from the points of view of accuracy and computational cost. We concentrate on residual strength, crack initiation and crack growth as a means to model and understand experimentally observed behaviors. Several modeling methods such as compounding and weight function techniques, and boundary and finite element modeling for stress intensity factor calculation are discussed. Further to reviews of those techniques, work performed included (i) developing alternative solutions to deal with boundary‐to‐boundary interaction when using the compounding technique, (ii) relating the precision of K calculations with the level of precision of the crack opening displacement of a reference solution, in order to assess the precision of weight function technique, (iii) modeling relevant geometries using the finite element method (FEM), (iv) working on the implementation of direct stress intensity factor K determination in the Higher Order Displacement Discontinuity Method (HODDM), and (v) developing tools to deal with residual stress fields around the boundary of the hydraulically pressurized boreholes.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 May 2016

Carlos Eduardo Chaves and Fernando Ferreira Fernandez

The purpose of this paper is to present a review about sizing of joints, from the static and fatigue points of view. A discussion about advantages and disadvantages of each…

Abstract

Purpose

The purpose of this paper is to present a review about sizing of joints, from the static and fatigue points of view. A discussion about advantages and disadvantages of each joining technology, among the ones mentioned above, will be presented.

Design/methodology/approach

Although many other aspects will be discussed, emphasis will be given to the joint fatigue behavior, and fatigue test results will be presented and discussed.

Findings

This paper is a subject review, where no new findings are presented. However, the comparison of fatigue test results for mechanically fastened joints and friction stir welding joints will show the advantages of the latter.

Practical Implications

With the information presented, the authors expect to provide some guidelines that will help to improve future joint designs.

Originality/value

The review information contained in this paper may be used as reference for aircraft joint design.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 November 2020

Abid Ullah, HengAn Wu, Asif Ur Rehman, YinBo Zhu, Tingting Liu and Kai Zhang

The purpose of this paper is to eliminate Part defects and enrich additive manufacturing of ceramics. Laser powder bed fusion (L-PBF) experiments were carried to investigate the…

Abstract

Purpose

The purpose of this paper is to eliminate Part defects and enrich additive manufacturing of ceramics. Laser powder bed fusion (L-PBF) experiments were carried to investigate the effects of laser parameters and selective oxidation of Titanium (mixed with TiO2) on the microstructure, surface quality and melting state of Titania. The causes of several L-PBF parts defects were thoroughly analyzed.

Design/methodology/approach

Laser power and scanning speed were varied within a specific range (50–125 W and 170–200 mm/s, respectively). Furthermore, varying loads of Ti (1%, 3%, 5% and 15%) were mixed with TiO2, which was selectively oxidized with laser beam in the presence of oxygen environment.

Findings

Part defects such as cracks, pores and uneven grains growth were widely reduced in TiO2 L-PBF specimens. Increasing the laser power and decreasing the scanning speed shown significant improvements in the surface morphology of TiO2 ceramics. The amount of Ti material was fully melted and simultaneously changed into TiO2 by the application of the laser beam. The selective oxidation of Ti material also improved the melting condition, microstructure and surface quality of the specimens.

Originality/value

TiO2 ceramic specimens were produced through L-PBF process. Increasing the laser power and decreasing the scanning speed is an effective way to sufficiently melt the powders and reduce parts defects. Selective oxidation of Ti by a high power laser beam approach was used to improve the manufacturability of TiO2 specimens.

Article
Publication date: 1 April 1992

A. CUITIÑO and M. ORTIZ

We provide a method for automatically extending small‐strain state‐update algorithms and their correspondent consistent tangents into the finite deformation range within the…

Abstract

We provide a method for automatically extending small‐strain state‐update algorithms and their correspondent consistent tangents into the finite deformation range within the framework of multiplicative plasticity. The procedure, when it applies, operates at the level of kinematics and, hence, can be implemented once and for all independently of the material‐specific details of the constitutive model. The versatility of the method is demonstrated by a numerical example.

Details

Engineering Computations, vol. 9 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 October 2016

Spyros Papaefthymiou, Theofani Tzevelekou, Alexandros Antonopoulos and Antonios Gypakis

During steel plate and long-product production, numerous imperfections and defects appear that deteriorate product quality and consequently reduce revenue. The purpose of this…

Abstract

Purpose

During steel plate and long-product production, numerous imperfections and defects appear that deteriorate product quality and consequently reduce revenue. The purpose of this paper is to provide a practical overview of typical defects (surface and internal) that occur and their root causes.

Design/methodology/approach

The data presented here derive from the quality department and from more than 50 technical reports of ELKEME S.A. on the last decade’s production of steel making companies STOMANA S.A. and SIDENOR S.A., with emphasis on the defects occurred in some of the products of the Bulgarian plant. Stereoscopic observations of surface defects, light optical metallography, and scanning electron microscopy with EDS represent the most used techniques to characterize defected macro-/micro-areas and microstructures.

Findings

In general, the most commonly encountered defects from semi-finished (billets, blooms, and slabs) and final (round bar and plate) steel products are as follows: network cracks, porosity, gas holes, shrinkage, shell, slivers, casting powder entrapment, ladle slag entrapment, other non-metallic inclusions, low hot ductility, centerline segregation cracking, macro- and micro-segregation, and mechanical defects (scratches, transverse cracks, and seams).

Practical implications

External and internal quality improvement can reduce the production cost (Euro/ton).

Social implications

Improvement of the quality of industrial plates and long products increases the safety of the further-produced constructions and systems such as bridges, cranes, heavy equipment, automobile parts, etc.

Originality/value

Root cause analysis and categorization of the most commonly encountered defects can pave the way to production process improvements that directly affect final product quality and the overall per ton production cost. The benefits of this work obviously affect all steel producers/processers, and also society through the safety increase achieved by the quality improvement in the steel products used in constructions and automobile parts.

Details

International Journal of Structural Integrity, vol. 7 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 2000