Search results

1 – 10 of 53
Article
Publication date: 9 May 2023

Guoqin Gao, Jun Sun and Yuanyuan Cao

This paper aims to solve the problems of the synchronization between branches and the uncertainties such as joint friction, load variation and external interference of a hybrid…

Abstract

Purpose

This paper aims to solve the problems of the synchronization between branches and the uncertainties such as joint friction, load variation and external interference of a hybrid mechanism. The controller is used to improve the synchronization and robustness of the hybrid mechanism system and achieve both finite time convergence and chattering-free sliding mode.

Design/methodology/approach

First, the dynamic model of hybrid mechanism containing lumped uncertainties is formulated by the Lagrange method, and a composite error based on coupling synchronization error and the end-effector tracking error is set up in the task space. Then, by combining the finite time super twisting sliding mode control algorithm, a composite error-based finite time super twisting sliding mode synchronous control law is designed to make the end-effector tracking error and coupling synchronization error achieve better tracking performance and convergence performance. Finally, the Lyapunov stability of the control law and the finite-time convergence of the composite error are proved theoretically.

Findings

To verify the effectiveness of the proposed control method, simulations and experiments for the prototype system of the hybrid mechanism are conducted. The results show that the proposed control method can achieve better tracking performance and convergence performance.

Originality/value

This is a new innovation for a hybrid mechanism containing lumped uncertainties to improve the robustness, convergence performance, tracking performance and synchronization of the system.

Details

Robotic Intelligence and Automation, vol. 43 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 20 June 2019

Rihab Bkekri, Anouar Benamor, Mohamed Amine Alouane, Georges Fried and Hassani Messaoud

The application of the sliding mode control has two obstacle phenomena: chattering and high activity of control action. The purpose of this paper concerns a novel super-twisting

Abstract

Purpose

The application of the sliding mode control has two obstacle phenomena: chattering and high activity of control action. The purpose of this paper concerns a novel super-twisting adaptive sliding mode control law of a human-driven knee joint orthosis. The proposed control approach consists of using dynamically adapted control gains that ensure the establishment, in a finite time, of a real second-order sliding mode. The efficiency of the controller is evaluated using an experimental set-up.

Design/methodology/approach

This study presents the synthesis of a robust super-twisting adaptive controller for the control of a lower limb–orthosis system. The developed control strategy will take into consideration the nonlinearities as well as the uncertainties resulting from the dynamics of the lower limb–orthosis system. It must also guarantee a good follow-up of the reference trajectory.

Findings

The authors first evaluated on a valid subject, the performances of this controller which were studied and compared to several criteria. The obtained results show that the controller using the Adaptive Super-Twisting algorithm is the one that guarantees the best performance. Validation tests involved a subject and included robustness tests against external disturbances and co-contractions of antagonistic muscles.

Originality/value

The main contribution of this paper is in developing the adaptation super-twisting methodology for finding the control gain resulting in the minimization of the chattering effect.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 April 2022

Yuxia Ji, Li Chen, Jun Zhang, Dexin Zhang and Xiaowei Shao

The purpose of this paper is to investigate the pose control of rigid spacecraft subject to dead-zone input, unknown external disturbance and parametric uncertainty in space…

232

Abstract

Purpose

The purpose of this paper is to investigate the pose control of rigid spacecraft subject to dead-zone input, unknown external disturbance and parametric uncertainty in space maneuvering mission.

Design/methodology/approach

First, a 6-Degree of Freedom (DOF) dynamic model of rigid spacecraft with dead-zone input, unknown external disturbances and parametric uncertainty is derived. Second, a super-twisting-like fixed-time disturbance observer (FTDO) with strong robustness is developed to estimate the lumped disturbances in fixed time. Based on the proposed observer, a non-singular fixed-time terminal sliding-mode (NFTSM) controller with superior performance is proposed.

Findings

Different from the existing sliding-mode controllers, the proposed control scheme can directly avoid the singularity in the controller design and speed up the convergence rate with improved control accuracy. Moreover, no prior knowledge of lumped disturbances’ upper bound and its first derivatives is required. The fixed-time stability of the entire closed-loop system is rigorously proved in the Lyapunov framework. Finally, the effectiveness and superiority of the proposed control scheme are proved by comparison with existing approaches.

Research limitations/implications

The proposed NFTSM controller can merely be applied to a specific type of spacecrafts, as the relevant system states should be measurable.

Practical implications

A NFTSM controller based on a super-twisting-like FTDO can efficiently deal with dead-zone input, unknown external disturbance and parametric uncertainty for spacecraft pose control.

Originality/value

This investigation uses NFTSM control and super-twisting-like FTDO to achieve spacecraft pose control subject to dead-zone input, unknown external disturbance and parametric uncertainty.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 April 2019

Erdem Ilten and Metin Demirtas

To meet the need of reducing the cost of industrial systems, sensorless control applications on electrical machines are increasing day by day. This paper aims to improve the…

Abstract

Purpose

To meet the need of reducing the cost of industrial systems, sensorless control applications on electrical machines are increasing day by day. This paper aims to improve the performance of the sensorless induction motor control system. To do this, the speed observer is designed based on the combination of the sliding mode and the fractional order integral.

Design/methodology/approach

Super-twisting sliding mode (STSM) and Grünwald–Letnikov approach are used on the proposed observer. The stability of the proposed observer is verified by using Lyapunov method. Then, the observer coefficients are optimized for minimizing the steady-state error and chattering amplitude. The optimum coefficients (c1, c2, ki and λ) are obtained by using response surface method. To verify the effectiveness of proposed observer, a large number of experiments are performed for different operation conditions, such as different speeds (500, 1,000 and 1,500 rpm) and loads (100 and 50 per cent loads). Parameter uncertainties (rotor inertia J and friction factor F) are tested to prove the robustness of the proposed method. All these operation conditions are applied for both proportional integral (PI) and fractional order STSM (FOSTSM) observers and their performances are compared.

Findings

The observer model is tested with optimum coefficients to validate the proposed observer effectiveness. At the beginning, the motor is started without load. When it reaches reference speed, the motor is loaded. Estimated speed and actual speed trends are compared. The results are presented in tables and figures. As a result, the FOSTSM observer has less steady-state error than the PI observer for all operation conditions. However, chattering amplitudes are lower in some operation conditions. In addition, the proposed observer shows more robustness against the parameter changes than the PI observer.

Practical implications

The proposed FOSTSM observer can be applied easily for industrial variable speed drive systems which are using induction motor to improve the performance and stability.

Originality/value

The robustness of the STSM and the memory-intensive structure of the fractional order integral are combined to form a robust and flexible observer. This paper grants the lower steady-state error and chattering amplitude for sensorless speed control of the induction motor in different speed and load operation conditions. In addition, the proposed observer shows high robustness against the parameter uncertainties.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 December 2023

Zhirui Zhao, Lina Hao, Guanghong Tao, Hongjun Liu and Lihua Shen

This study discusses the tracking trajectory issue of the exoskeleton under the bounded disturbance and designs an useful tracking trajectory control method to solve it. By using…

129

Abstract

Purpose

This study discusses the tracking trajectory issue of the exoskeleton under the bounded disturbance and designs an useful tracking trajectory control method to solve it. By using the proposed control method, the tracking error can be successfully convergence to the assigned boundary. Meanwhile, the chattering effect caused by the actuators is already reduced, and the tracking performance of the pneumatic artificial muscles (PAMs) elbow exoskeleton is improved effectively.

Design/methodology/approach

A prescribed performance sliding mode control method was developed in this study to fulfill the joint position tracking trajectory task on the elbow exoskeleton driven by two PAMs. In terms of the control structure, a dynamic model was built by conforming to the adaptive law to compensate for the time variety and uncertainty exhibited by the system. Subsequently, a super-twisting algorithm-based second-order sliding mode control method was subjected to the exoskeleton under the boundedness of external disturbance. Moreover, the prescribed performance control method exhibits a smooth prescribed function with an error transformation function to ensure the tracking error can be finally convergent to the pre-designed requirement.

Findings

From the theoretical perspective, the stability of the control method was verified through Lyapunov synthesis. On that basis, the tracking performance of the proposed control method was confirmed through the simulation and the manikin model experiment.

Originality/value

As revealed by the results of this study, the proposed control method sufficiently applies to the PAMs elbow exoskeleton for tracking trajectory, which means it has potential application in the actual robot-assisted passive rehabilitation tasks.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 2012

Ruimin Zhang, Li Wang and Yingjiang Zhou

The purpose of this paper is to design a robust control scheme to achieve robust tracking of velocity and altitude commands for a general hypersonic vehicle (HSV) in the presence…

Abstract

Purpose

The purpose of this paper is to design a robust control scheme to achieve robust tracking of velocity and altitude commands for a general hypersonic vehicle (HSV) in the presence of parameter variations and external disturbances.

Design/methodology/approach

The robust control scheme is composed of nonsingular terminal sliding mode control (NTSMC), super twisting control algorithm (STC) and recurrent neural network (RNN). First, by combing a novel NTSMC and STC algorithm, a second order NTSMC approach for HSV is proposed to provide fast, continuous and high precision tracking control. Second to relax the requirements for the bounds of the lumped uncertainties in control design, a RNN disturbance observer is presented to increase the robustness of the control system. The weights of RNN are updated by adaptive laws based on Lyapunov theorem, thus the closed‐loop stability can be guaranteed.

Findings

Simulation results demonstrate that the proposed method is effective, leading to promising performance.

Originality/value

The main contributions of this work are: first, both parameter variations and external disturbances are considered in control design for the longitudinal dynamic model of HSV; and second, the proposed controller can remove chattering and achieve more favorable tracking performances than conventional sliding mode control.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 5 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 10 January 2024

Xin Cai, Xiaozhou Zhu and Wen Yao

Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and…

Abstract

Purpose

Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and parameter uncertainties, it is difficult to control the unmanned aerial vehicle (UAV) to achieve high-precision tracking performance. This paper aims to design a safety controller that uses observer and neural network method to improve the tracking performance of UAV under multiple disturbances. The experiments prove that this method is effective.

Design/methodology/approach

First, to actively estimate and compensate the synthetic uncertainties of the system, a finite-time extended state observer is investigated, and the disturbances are transformed into the extended state of the system for estimation. Second, an adaptive neural network controller that does not accurately require the dynamic model knowledge is designed based on the estimated value, where the weights of the neural network can be dynamically adjusted by the adaptive law. Furthermore, the finite-time bounded convergence of the proposed observer and the stability of the system are proved through homogeneous theory and Lyapunov method.

Findings

The figure-“8” climbing flight simulation and real flight experiments illustrate that the proposed safety control strategy has good tracking performance.

Originality/value

This paper proposes the safety control structure of the UAV, which combines the extended state observer with the neural network method. Numerical simulation results and actual flight experiments demonstrate the effectiveness of the proposed control strategy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 October 2018

Ali Karami-Mollaee, Hamed Tirandaz and Oscar Barambones

The purpose of this paper is position control scheme for a servo induction motor (SIM) with uncertainty has been designed using a new observer issue and a dynamic sliding mode…

Abstract

Purpose

The purpose of this paper is position control scheme for a servo induction motor (SIM) with uncertainty has been designed using a new observer issue and a dynamic sliding mode control (DSMC).

Design/methodology/approach

In DSMC, the chattering is removed due to the integrator (or a low-pass filter) which is placed before the input control of the plant. However, in DSMC, the augmented system has one dimension bigger than the actual system (if integrator is used) and then, the plant model should be completely known. To solve this problem in SIM, the use of a new adaptive state observer (ASO) is proposed.

Findings

The advantage of the proposed approach is to maintain the system controlled under the external load torque variations. Then, the load variations do not affect the motor positioning. Moreover, it is demonstrated that the observer error converges to zero based on the Lyapunov stability theory.

Originality/value

The knowledge of the upper bound for the system uncertainty is not necessary in an adaptive state observer, which is important in practical implementation. Simulation results are presented to demonstrate the performance of the proposed approach.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 April 2024

Li Li, Tong Huang, Chujia Pan, J.F. Pan and Wenbin Su

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the…

Abstract

Purpose

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the dual-arm robot is directly in contact with external environment, controlling the mutual force between robot and external environment is of great importance. Besides, a high compliance of the robot should be guaranteed.

Design/methodology/approach

An impedance control based on Particle Swarm Optimization (PSO) algorithm is designed to track the mutual force and achieve compliance control of the robot end.

Findings

The experimental results show that the impedance control coefficients can be automatically tuned converged by PSO algorithm.

Originality/value

The system can reach a steady state within 0.03 s with overshoot convergence, and the force fluctuation range at the steady state decreases to about ±0.08 N even under the force mutation condition.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 March 2024

Zhuoer Yao, Zi Kan, Daochun Li, Haoyuan Shao and Jinwu Xiang

The purpose of this paper is to solve the challenging problem of automatic carrier landing with the presence of environmental disturbances. Therefore, a global fast terminal…

Abstract

Purpose

The purpose of this paper is to solve the challenging problem of automatic carrier landing with the presence of environmental disturbances. Therefore, a global fast terminal sliding mode control (GFTSMC) method is proposed for automatic carrier landing system (ACLS) to achieve safe carrier landing control.

Design/methodology/approach

First, the framework of ACLS is established, which includes flight glide path model, guidance model, approach power compensation system and flight controller model. Subsequently, the carrier deck motion model and carrier air-wake model are presented to simulate the environmental disturbances. Then, the detailed design steps of GFTSMC are provided. The stability analysis of the controller is proved by Lyapunov theorems and LaSalle’s invariance principle. Furthermore, the arrival time analysis is carried out, which proves the controller has fixed time convergence ability.

Findings

The numerical simulations are conducted. The simulation results reveal that the proposed method can guarantee a finite convergence time and safe carrier landing under various conditions. And the superiority of the proposed method is further demonstrated by comparative simulations and Monte Carlo tests.

Originality/value

The GFTSMC method proposed in this paper can achieve precise and safe carrier landing with environmental disturbances, which has important referential significance to the improvement of ACLS controller designs.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 53