Search results

1 – 10 of 331
Article
Publication date: 21 August 2018

Ryszard Sikora and Stanislaw Pawłowski

This paper aims to evaluate the possibilities of fractional calculus application in electrical circuits and magnetic field theories.

Abstract

Purpose

This paper aims to evaluate the possibilities of fractional calculus application in electrical circuits and magnetic field theories.

Design/methodology/approach

The analysis of mathematical notation is used for physical phenomena description. The analysis aims to challenge or prove the correctness of applied notation.

Findings

Fractional calculus is sometimes applied correctly and sometimes erroneously in electrical engineering.

Originality/value

This paper provides guidelines regarding correct application of fractional calculus in description of electrical circuits’ phenomena. It can also inspire researchers to find new applications for fractional calculus in the future.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 July 2021

Yunlong Li, Zhinong Li, Dong Wang and Zhike Peng

The purpose of this paper is to discuss the asymptotic models of different parts with a pitting fault in rolling bearings.

Abstract

Purpose

The purpose of this paper is to discuss the asymptotic models of different parts with a pitting fault in rolling bearings.

Design/methodology/approach

For rolling bearings with a pitting fault, the displacement deviation between raceways and rolling elements is usually considered to vary instantaneously. However, the deviation should change gradually. Based on this shortcoming, the variation rule and calculation method of the displacement deviation are explored. Asymptotic models of different parts with a pitting fault are discussed, respectively. Besides, rolling bearing systems have prominent fractional characteristics unconsidered in the traditional models. Therefore, fractional calculus is introduced into the modeling of rolling bearings. New dynamic asymptotic models of different parts with a pitting fault are proposed based on fractional damping. The numerical simulation is performed based on the proposed model, and the dynamic characteristics are analyzed through the bifurcation diagrams, trajectory diagrams and frequency spectrograms.

Findings

Compared with the model based on integral calculus, the proposed model can better reflect the periodic characteristics and fault characteristics of rolling bearings. Finally, the proposed model is verified by the experiment. The dynamic characteristics of rolling bearings at different rotating speeds are analyzed. The experimental results are consistent with the simulation results. Therefore, the proposed model is effective.

Originality/value

(1) The above models are idealized, i.e. the local pitting fault is treated as a rectangle. When a component comes into contact with the fault, the displacement deviation between the component and the fault component immediately releases if the component enters the fault area and restores if the component leaves. However, the displacement deviation should change gradually. Only when the component touches the fault bottom, the displacement deviation reaches the maximum. (2) Due to the material's memory and fluid viscoelasticity, rolling bearing systems exhibit significant fractional characteristics. However, the above models are all proposed based on integral calculus. Integral calculus has some local characteristics and is not suitable for describing historical dependent processes. Fractional calculus can better describe the essential characteristics of the system.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 November 2019

Guishu Liang and Yulan Yang

This paper aims to analyze soil electrical properties based on fractional calculus theory due to the fact that the frequency dependence of soil electrical parameters at high…

98

Abstract

Purpose

This paper aims to analyze soil electrical properties based on fractional calculus theory due to the fact that the frequency dependence of soil electrical parameters at high frequencies exhibits a fractional effect. In addition, for the fractional-order formulation, this paper aims to provide a more accurate numerical algorithm for solving the fractional differential equations.

Design/methodology/approach

This paper analyzes the frequency-dependence of soil electrical properties based on fractional calculus theory. A collocation method based on the Puiseux series is proposed to solve fractional differential equations.

Findings

The algorithm proposed in this paper can be used to solve fractional differential equations of arbitrary order, especially for 0.5th-order equations, obtaining accurate numerical solutions. Calculating the impact response of the grounding electrode based on the fractional calculus theory can obtain a more accurate result.

Originality/value

This paper proposes an algorithm for solving fractional differential equations of arbitrary order, especially for 0.5th-order equations. Using fractional calculus theory to analyze the frequency-dependent effect of soil electrical properties, provides a new idea for ground-related transient calculation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 2023

Kaixin Li, Ye He, Kuan Li and Chengguo Liu

With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this…

Abstract

Purpose

With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this research is to propose an adaptive fractional-order admittance control scheme to realize a robot–environment contact with high accuracy, small overshoot and fast response.

Design/methodology/approach

Fractional calculus is introduced to reconstruct the classical admittance model in this control scheme, which can more accurately describe the complex physical relationship between position and force in the interaction process of the robot–environment. In this control scheme, the pre-PID controller and fuzzy controller are adopted to improve the system force tracking performance in highly dynamic unknown environments, and the fuzzy controller is used to improve the trajectory, transient and steady-state response by adjusting the pre-PID integration gain online. Furthermore, the stability and robustness of this control algorithm are theoretically and experimentally demonstrated.

Findings

The excellent force tracking performance of the proposed control algorithm is verified by constructing highly dynamic unstructured environments through simulations and experiments. In simulations and experiments, the proposed control algorithm shows satisfactory force tracking performance with the advantages of fast response speed, little overshoot and strong robustness.

Practical implications

The control scheme is practical and simple in the actual industrial and medical scenarios, which requires accurate force control by the robot.

Originality/value

A new fractional-order admittance controller is proposed and verified by experiments in this research, which achieves excellent force tracking performance in dynamic unknown environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 July 2017

Zaher Rahimi, Wojciech Sumelka and Xiao-Jun Yang

Recently, a new formulation has been introduced for non-local mechanics in terms of fractional calculus. Fractional calculus is a branch of mathematical analysis that studies the…

Abstract

Purpose

Recently, a new formulation has been introduced for non-local mechanics in terms of fractional calculus. Fractional calculus is a branch of mathematical analysis that studies the differential operators of an arbitrary (real or complex) order and is used successfully in various fields such as mathematics, science and engineering. The purpose of this paper is to introduce a new fractional non-local theory which may be applicable in various simple or complex mechanical problems.

Design/methodology/approach

In this paper (by using fractional calculus), a fractional non-local theory based on the conformable fractional derivative (CFD) definition is presented, which is a generalized form of the Eringen non-local theory (ENT). The theory contains two free parameters: the fractional parameter which controls the stress gradient order in the constitutive relation and could be an integer and a non-integer and the non-local parameter to consider the small-scale effect in the micron and the sub-micron scales. The non-linear governing equation is solved by the Galerkin and the parameter expansion methods. The non-linearity of the governing equation is due to the presence of von-Kármán non-linearity and CFD definition.

Findings

The theory has been used to study linear and non-linear free vibration of the simply-supported (S-S) and the clamped-free (C-F) nano beams and then the influence of the fractional and the non-local parameters has been shown on the linear and non-linear frequency ratio.

Originality/value

A new parameter of the theory (the fractional parameter) makes the modeling more fixable – this model can conclude all of integer and non-integer operators and is not limited to special operators such as ENT. In other words, it allows us to use more sophisticated mathematics to model physical phenomena. On the other hand, in the comparison of classic fractional non-local theory, the theory applicable in various simple or complex mechanical problems may be used because of simpler forms of the governing equation owing to the use of CFD definition.

Details

Engineering Computations, vol. 34 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 May 2023

Kang-Jia Wang and Jing-Hua Liu

As a powerful mathematical analysis tool, the local fractional calculus has attracted wide attention in the field of fractal circuits. The purpose of this paper is to derive a new

55

Abstract

Purpose

As a powerful mathematical analysis tool, the local fractional calculus has attracted wide attention in the field of fractal circuits. The purpose of this paper is to derive a new -order non-differentiable (ND) R-C zero state-response circuit (ZSRC) by using the local fractional derivative on the Cantor set for the first time.

Design/methodology/approach

A new -order ND R-C ZSRC within the local fractional derivative on the Cantor set is derived for the first time in this work. By defining the ND lumped elements via the local fractional derivative, the -order Kirchhoff voltage laws equation is established, and the corresponding solutions in the form of the Mittag-Leffler decay defined on the Cantor sets are derived by applying the local fractional Laplace transform and inverse local fractional Laplace transform.

Findings

The characteristics of the -order R-C ZSRC on the Cantor sets are analyzed and presented through the 2-D curves. It is found that the -order R-C ZSRC becomes the classic one when = 1. The comparative results between the -order R-C ZSRC and the classic one show that the proposed method is correct and effective and is expected to shed light on the theory study of the fractal electrical systems.

Originality/value

To the best of the authors’ knowledge, this paper, for the first time ever, proposes the -order ND R-C ZSRC within the local fractional derivative on the Cantor sets. The results of this paper are expected to give some new enlightenment to the development of the fractal circuits.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 June 2023

Rawid Banchuin

The purpose of this paper is to propose a novel nonlocal fractal calculus scheme dedicated to the analysis of fractal electrical circuit, namely, the generalized nonlocal fractal…

Abstract

Purpose

The purpose of this paper is to propose a novel nonlocal fractal calculus scheme dedicated to the analysis of fractal electrical circuit, namely, the generalized nonlocal fractal calculus.

Design/methodology/approach

For being generalized, an arbitrary kernel function has been adopted. The condition on order has been derived so that it is not related to the γ-dimension of the fractal set. The fractal Laplace transforms of our operators have been derived.

Findings

Unlike the traditional power law kernel-based nonlocal fractal calculus operators, ours are generalized, consistent with the local fractal derivative and use higher degree of freedom. As intended, the proposed nonlocal fractal calculus is applicable to any kind of fractal electrical circuit. Thus, it has been found to be a more efficient tool for the fractal electrical circuit analysis than any previous fractal set dedicated calculus scheme.

Originality/value

A fractal calculus scheme that is more efficient for the fractal electrical circuit analysis than any previous ones has been proposed in this work.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 June 2021

N. Kanagaraj and Vishwa Nath Jha

This paper aims to design a modified fractional order proportional integral derivative (PID) (FO[PI]λDµ) controller based on the principle of fractional calculus and investigate…

Abstract

Purpose

This paper aims to design a modified fractional order proportional integral derivative (PID) (FO[PI]λDµ) controller based on the principle of fractional calculus and investigate its performance for a class of a second-order plant model under different operating conditions. The effectiveness of the proposed controller is compared with the classical controllers.

Design/methodology/approach

The fractional factor related to the integral term of the standard FO[PI]λDµ controller is applied as a common fractional factor term for the proportional plus integral coefficients in the proposed controller structure. The controller design is developed using the regular closed-loop system design specifications such as gain crossover frequency, phase margin, robustness to gain change and two more specifications, namely, noise reduction and disturbance elimination functions.

Findings

The study results of the designed controller using matrix laboratory software are analyzed and compared with an integer order PID and a classical FOPIλDµ controller, the proposed FO[PI]λDµ controller exhibit a high degree of performance in terms of settling time, fast response and no overshoot.

Originality/value

This paper proposes a methodology for the FO[PI]λDµ controller design for a second-order plant model using the closed-loop system design specifications. The effectiveness of the proposed control scheme is demonstrated under different operating conditions such as external load disturbances and input parameter change.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 August 2018

Rama Rao A., Satyananda Reddy and Valli Kumari V.

Multimedia applications such as digital audio and video have stringent quality of service (QoS) requirement in mobile ad hoc network. To support wide range of QoS, complex routing…

Abstract

Purpose

Multimedia applications such as digital audio and video have stringent quality of service (QoS) requirement in mobile ad hoc network. To support wide range of QoS, complex routing protocols with multiple QoS constraints are necessary. In QoS routing, the basic problem is to find a path that satisfies multiple QoS constraints. Moreover, mobility, congestion and packet loss in dynamic topology of network also leads to QoS performance degradation of protocol.

Design/methodology/approach

In this paper, the authors proposed a multi-path selection scheme for QoS aware routing in mobile ad hoc network based on fractional cuckoo search algorithm (FCS-MQARP). Here, multiple QoS constraints energy, link life time, distance and delay are considered for path selection.

Findings

The experimentation of proposed FCS-MQARP is performed over existing QoS aware routing protocols AOMDV, MMQARP, CS-MQARP using measures such as normalized delay, energy and throughput. The extensive simulation study of the proposed FCS-based multipath selection shows that the proposed QoS aware routing protocol performs better than the existing routing protocol with maximal energy of 99.1501 and minimal delay of 0.0554.

Originality/value

This paper presents a hybrid optimization algorithm called the FCS algorithm for the multi-path selection. Also, a new fitness function is developed by considering the QoS constraints such as energy, link life time, distance and delay.

Details

Sensor Review, vol. 39 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 September 2024

Ahmed E. Abouelregal, Marin Marin, S.S. Saskar and Abdelaziz Foul

Understanding the mechanical and thermal behavior of materials is the goal of the branch of study known as fractional thermoelasticity, which blends fractional calculus with…

Abstract

Purpose

Understanding the mechanical and thermal behavior of materials is the goal of the branch of study known as fractional thermoelasticity, which blends fractional calculus with thermoelasticity. It accounts for the fact that heat transfer and deformation are non-local processes that depend on long-term memory. The sphere is free of external stresses and rotates around one of its radial axes at a constant rate. The coupled system equations are solved using the Laplace transform. The outcomes showed that the viscoelastic deformation and thermal stresses increased with the value of the fractional order coefficients.

Design/methodology/approach

The results obtained are considered good because they indicate that the approach or model under examination shows robust performance and produces accurate or reliable results that are consistent with the corresponding literature.

Findings

This study introduces a proposed viscoelastic photoelastic heat transfer model based on the Moore-Gibson-Thompson framework, accompanied by the incorporation of a new fractional derivative operator. In deriving this model, the recently proposed Caputo proportional fractional derivative was considered. This work also sheds light on how thermoelastic materials transfer light energy and how plasmas interact with viscoelasticity. The derived model was used to consider the behavior of a solid semiconductor sphere immersed in a magnetic field and subjected to a sudden change in temperature.

Originality/value

This study introduces a proposed viscoelastic photoelastic heat transfer model based on the Moore-Gibson-Thompson framework, accompanied by the incorporation of a new fractional derivative operator. In deriving this model, the recently proposed Caputo proportional fractional derivative was considered. This work also sheds light on how thermoelastic materials transfer light energy and how plasmas interact with viscoelasticity. The derived model was used to consider the behavior of a solid semiconductor sphere immersed in a magnetic field and subjected to a sudden change in temperature.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 331