Search results

1 – 10 of over 23000
Article
Publication date: 13 November 2017

Tianyi Xiong, Zhiqiang Pu and Jianqiang Yi

The purpose of this paper is to investigate the time-varying finite-time formation tracking control problem for multiple unmanned aerial vehicle systems under switching…

Abstract

Purpose

The purpose of this paper is to investigate the time-varying finite-time formation tracking control problem for multiple unmanned aerial vehicle systems under switching topologies, where the states of the unmanned aerial vehicles need to form desired time-varying formations while tracking the trajectory of the virtual leader in finite time under jointly connected topologies.

Design/methodology/approach

A consensus-based formation control protocol is constructed to achieve the desired formation. In this paper, the time-varying formation is specified by a piecewise continuously differentiable vector, while the finite-time convergence is guaranteed by utilizing a non-linear function. Based on the graph theory, the finite-time stability of the close-loop system with the proposed control protocol under jointly connected topologies is proven by applying LaSalle’s invariance principle and the theory of homogeneity with dilation.

Findings

The effectiveness of the proposed protocol is verified by numerical simulations. Consequently, the proposed protocol can successfully achieve the predefined time-varying formation in finite time under jointly connected topologies while tracking the trajectory generated by the leader.

Originality/value

This paper proposes a solution to simultaneously solve the control problems of time-varying formation tracking, finite-time convergence, and switching topologies.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 10 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 March 1984

Jerzy Kujawski and Chandrakant S. Desai

A generalized time finite element method is considered for time integration of non‐linear equations of motion arising from dynamic problems. A simple three‐time level family of…

Abstract

A generalized time finite element method is considered for time integration of non‐linear equations of motion arising from dynamic problems. A simple three‐time level family of schemes is obtained. Evaluation of the schemes shows that the proposed approach may lead to unconditionally stable algorithms for non‐linear problems. Numerical examples show the accuracy and efficiency of the proposed algorithm in comparison to Newmark's average acceleration method and four order accurate explicit algorithm.

Details

Engineering Computations, vol. 1 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 June 2003

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics…

1320

Abstract

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics include: theory – domain decomposition/partitioning, load balancing, parallel solvers/algorithms, parallel mesh generation, adaptive methods, and visualization/graphics; applications – structural mechanics problems, dynamic problems, material/geometrical non‐linear problems, contact problems, fracture mechanics, field problems, coupled problems, sensitivity and optimization, and other problems; hardware and software environments – hardware environments, programming techniques, and software development and presentations. The bibliography at the end of this paper contains 850 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1996 and 2002.

Details

Engineering Computations, vol. 20 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 January 2018

Yong Guo, Shen-Min Song and Xue-Hui Li

This paper aims to investigate the problem of finite-time consensus tracking control without unwinding for formation flying spacecraft in the presence of external disturbances.

Abstract

Purpose

This paper aims to investigate the problem of finite-time consensus tracking control without unwinding for formation flying spacecraft in the presence of external disturbances.

Design/methodology/approach

Two distributed finite-time controllers are developed using the backstepping sliding mode. The first robust controller can compensate for external disturbances with known bounds, and the second one can compensate for external disturbances with unknown bounds.

Findings

Because the controllers are designed on the basis of rotation matrix, which represents the set of attitudes both globally and uniquely, the system can overcome the drawback of unwinding, which results in extra fuel consumption. Through introducing a novel virtual angular velocity, exchange of control signals between neighboring spacecraft becomes unnecessary, and it is able to reduce the communication burden.

Practical implications

The two robust controllers can deal with unwinding that may result in fuel consumption by traveling a long distance before returning to a desired attitude when the closed-loop system is close to the desired attitude equilibrium.

Originality/value

Two finite-time controllers without unwinding are proposed for formation flying spacecraft by using backstepping sliding mode. Furthermore, exchange of control signals between neighboring spacecraft is unnecessary.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 August 2001

Jaroslav Mackerle

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the…

1682

Abstract

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the end contains 2,177 references to papers, conference proceedings and theses/dissertations dealing with the subjects that were published in 1990‐2000.

Details

Engineering Computations, vol. 18 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 August 2024

Yanchao Sun, Jiayu Li, Hongde Qin and Yutong Du

Autonomous underwater vehicle (AUV) is widely used in resource prospection and underwater detection due to its excellent performance. This study considers input saturation…

Abstract

Purpose

Autonomous underwater vehicle (AUV) is widely used in resource prospection and underwater detection due to its excellent performance. This study considers input saturation, nonlinear model uncertainties and external ocean current disturbances. The containment errors can be limited to a small neighborhood of zero in finite time by employing control strategy. The control strategy can keep errors within a certain range between the trajectory followed by AUVs and their intended targets. This can mitigate the issues of collisions and disruptions in communication which may arise from AUVs being in close proximity or excessively distant from each other.

Design/methodology/approach

The tracking errors are constrained. Based on the directed communication topology, a cooperative formation control algorithm for multi-AUV systems with constrained errors is designed. By using the saturation function, state observers are designed to estimate the AUV’s velocity in six degrees of freedom. A new virtual control algorithm is designed through combining backstepping technique and the tan-type barrier Lyapunov function. Neural networks are used to estimate and compensate for the nonlinear model uncertainties and external ocean current disturbances. A neural network adaptive law is designed.

Findings

The containment errors can be limited to a small neighborhood of zero in finite time so that follower AUVs can arrive at the convex hull consisting of leader AUVs within finite time. The validity of the results is indicated by simulations.

Originality/value

The state observers are designed to approximate the speed of the AUV and improve the accuracy of the control method. The anti-saturation function and neural network adaptive law are designed to deal with input saturation and general disturbances, respectively. It can ensure the safety and reliability of the multiple AUV systems.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 June 2006

Mile R. Vujičić

To provide an analysis of transient heat conduction, which is solved using different iterative solvers for graduate and postgraduate students (researchers) which can help them…

1686

Abstract

Purpose

To provide an analysis of transient heat conduction, which is solved using different iterative solvers for graduate and postgraduate students (researchers) which can help them develop their own research.

Design/methodology/approach

Three‐dimensional transient heat conduction in homogeneous materials using different time‐stepping methods such as finite difference (Θ explicit, implicit and Crank‐Nicolson) and finite element (weighted residual and least squared) methods. Iterative solvers used in the paper are conjugate gradient (CG), preconditioned gradient, least square CG, conjugate gradient squared (CGS), preconditioned CGS, bi‐conjugate gradient (BCG), preconditioned BCG, bi‐conjugate gradient stabilized (BCGSTAB), reconditioned BCGSTAB and Gaussian elimination with incomplete Cholesky factorization.

Findings

Provides information on which time‐stepping method is the most accurate, which solver is the fastest to solve a symmetric and positive system of linear matrix equations of all those considered.

Practical implications

Fortran 90 code given as an abstract can be very useful for graduate and postgraduate students to develop their own code.

Originality/value

This paper offers practical help to an individual starting his/her research in the finite element technique and numerical methods.

Details

Engineering Computations, vol. 23 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 27 November 2023

J.I. Ramos and Carmen María García López

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the…

313

Abstract

Purpose

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the propagation of small-amplitude waves in shallow water, as a function of the relaxation time, linear and nonlinear drift, power of the nonlinear advection flux, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of three types of initial conditions.

Design/methodology/approach

An implicit, first-order accurate in time, finite difference method valid for semipositive relaxation times has been used to solve the equation in a truncated domain for three different initial conditions, a first-order time derivative initially equal to zero and several constant wave speeds.

Findings

The numerical experiments show a very rapid transient from the initial conditions to the formation of a leading propagating wave, whose duration depends strongly on the shape, amplitude and width of the initial data as well as on the coefficients of the bidirectional equation. The blowup times for the triangular conditions have been found to be larger than those for the Gaussian ones, and the latter are larger than those for rectangular conditions, thus indicating that the blowup time decreases as the smoothness of the initial conditions decreases. The blowup time has also been found to decrease as the relaxation time, degree of nonlinearity, linear drift coefficient and amplitude of the initial conditions are increased, and as the width of the initial condition is decreased, but it increases as the viscosity coefficient is increased. No blowup has been observed for relaxation times smaller than one-hundredth, viscosity coefficients larger than ten-thousandths, quadratic and cubic nonlinearities, and initial Gaussian, triangular and rectangular conditions of unity amplitude.

Originality/value

The blowup of a one-dimensional, bidirectional equation that is a model for the propagation of waves in shallow water, longitudinal displacement in homogeneous viscoelastic bars, nerve conduction, nonlinear acoustics and heat transfer in very small devices and/or at very high transfer rates has been determined numerically as a function of the linear and nonlinear drift coefficients, power of the nonlinear drift, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of the initial conditions for nonzero relaxation times.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2002

Patrick Dular and Patrick Kuo‐Peng

An efficient and robust time discretization procedure of theta type is proposed in the frame of the finite element‐circuit equation coupling for electronic circuits with switches…

Abstract

An efficient and robust time discretization procedure of theta type is proposed in the frame of the finite element‐circuit equation coupling for electronic circuits with switches, i.e. the use of diodes, thyristors and transistors. This procedure enables the use of the Crank‐Nicolson scheme whatever the circuit and its working conditions by eliminating the undesirable oscillations of the solution peculiar to this scheme. It is based on the accurate determination of the switching instants and on a local modification of the theta parameter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 October 2018

Gaurav Mittal and Vinayak Kulkarni

The purpose of this paper is to frame a dual-phase-lag model using the fractional theory of thermoelasticity with relaxation time. The generalized Fourier law of heat conduction…

Abstract

Purpose

The purpose of this paper is to frame a dual-phase-lag model using the fractional theory of thermoelasticity with relaxation time. The generalized Fourier law of heat conduction based upon Tzou model that includes temperature gradient, the thermal displacement and two different translations of heat flux vector and temperature gradient has been used to formulate the heat conduction model. The microstructural interactions and corresponding thermal changes have been studied due to the involvement of relaxation time and delay time translations. This results in achieving the finite speed of thermal wave. Classical coupled and generalized thermoelasticity theories are recovered by considering the various special cases for different order of fractional derivatives and two different translations under consideration.

Design/methodology/approach

The work presented in this manuscript proposes a dual-phase-lag mathematical model of a thick circular plate in a finite cylindrical domain subjected to axis-symmetric heat flux. The model has been designed in the context of fractional thermoelasticity by considering two successive terms in Taylor’s series expansion of fractional Fourier law of heat conduction in the two different translations of heat flux vector and temperature gradient. The analytical results have been obtained in Laplace transform domain by transforming the original problem into eigenvalue problem using Hankel and Laplace transforms. The numerical inversions of Laplace transforms have been achieved using the Gaver−Stehfast algorithm, and convergence criterion has been discussed. For illustrative purpose, the dual-phase-lag model proposed in this manuscript has been applied to a periodically varying heat source. The numerical results have been depicted graphically and compared with classical, fractional and generalized thermoelasticity for various fractional orders under consideration.

Findings

The microstructural interactions and corresponding thermal changes have been studied due to the involvement of relaxation time and delay time translations. This results in achieving the finite speed of thermal wave. Classical coupled and generalized thermoelasticity theories are recovered by considering the various special cases for different order of fractional derivatives and two different translations under consideration. This model has been applied to study the thermal effects in a thick circular plate subjected to a periodically varying heat source.

Practical implications

A dual-phase-lag model can effectively be incorporated to study the transient heat conduction problems for an exponentially decaying pulse boundary heat flux and/or for a short-pulse boundary heat flux in long solid tubes and cylinders. This model is also applicable to study the various effects of the thermal lag ratio and the shift time. These dual-phase-lag models are also practically applicable in the problems of modeling of nanoscale heat transport problems of semiconductor devices and accordingly semiconductors can be classified as per their ability of heat conduction.

Originality/value

To the authors’ knowledge, no one has discussed fractional thermoelastic dual-phase-lag problem associated with relaxation time in a finite cylindrical domain for a thick circular plate subjected to an axis-symmetric heat source. This is the latest and novel contribution to the field of thermal mechanics.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 23000