Search results

1 – 10 of over 2000
Article
Publication date: 21 November 2022

Aslan Ahmet Haykir and Ilkay Oksuz

Data quality and data resolution are essential for computer vision tasks like medical image processing, object detection, pattern recognition and so on. Super-resolution is a way…

128

Abstract

Purpose

Data quality and data resolution are essential for computer vision tasks like medical image processing, object detection, pattern recognition and so on. Super-resolution is a way to increase the image resolution, and super-resolved images contain more information compared to their low-resolution counterparts. The purpose of this study is analyzing the effects of the super resolution models trained before on object detection for aerial images.

Design/methodology/approach

Two different models were trained using the Super-Resolution Generative Adversarial Network (SRGAN) architecture on two aerial image data sets, the xView and the Dataset for Object deTection in Aerial images (DOTA). This study uses these models to increase the resolution of aerial images for improving object detection performance. This study analyzes the effects of the model with the best perceptual index (PI) and the model with the best RMSE on object detection in detail.

Findings

Super-resolution increases the object detection quality as expected. But, the super-resolution model with better perceptual quality achieves lower mean average precision results compared to the model with better RMSE. It means that the model with a better PI is more meaningful to human perception but less meaningful to computer vision.

Originality/value

The contributions of the authors to the literature are threefold. First, they do a wide analysis of SRGAN results for aerial image super-resolution on the task of object detection. Second, they compare super-resolution models with best PI and best RMSE to showcase the differences on object detection performance as a downstream task first time in the literature. Finally, they use a transfer learning approach for super-resolution to improve the performance of object detection.

Details

Information Discovery and Delivery, vol. 51 no. 4
Type: Research Article
ISSN: 2398-6247

Keywords

Article
Publication date: 31 July 2024

Yongqing Ma, Yifeng Zheng, Wenjie Zhang, Baoya Wei, Ziqiong Lin, Weiqiang Liu and Zhehan Li

With the development of intelligent technology, deep learning has made significant progress and has been widely used in various fields. Deep learning is data-driven, and its…

26

Abstract

Purpose

With the development of intelligent technology, deep learning has made significant progress and has been widely used in various fields. Deep learning is data-driven, and its training process requires a large amount of data to improve model performance. However, labeled data is expensive and not readily available.

Design/methodology/approach

To address the above problem, researchers have integrated semi-supervised and deep learning, using a limited number of labeled data and many unlabeled data to train models. In this paper, Generative Adversarial Networks (GANs) are analyzed as an entry point. Firstly, we discuss the current research on GANs in image super-resolution applications, including supervised, unsupervised, and semi-supervised learning approaches. Secondly, based on semi-supervised learning, different optimization methods are introduced as an example of image classification. Eventually, experimental comparisons and analyses of existing semi-supervised optimization methods based on GANs will be performed.

Findings

Following the analysis of the selected studies, we summarize the problems that existed during the research process and propose future research directions.

Originality/value

This paper reviews and analyzes research on generative adversarial networks for image super-resolution and classification from various learning approaches. The comparative analysis of experimental results on current semi-supervised GAN optimizations is performed to provide a reference for further research.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 6 August 2021

A. Valli Bhasha and B.D. Venkatramana Reddy

The problems of Super resolution are broadly discussed in diverse fields. Rather than the progression toward the super resolution models for real-time images, operating…

Abstract

Purpose

The problems of Super resolution are broadly discussed in diverse fields. Rather than the progression toward the super resolution models for real-time images, operating hyperspectral images still remains a challenging problem.

Design/methodology/approach

This paper aims to develop the enhanced image super-resolution model using “optimized Non-negative Structured Sparse Representation (NSSR), Adaptive Discrete Wavelet Transform (ADWT), and Optimized Deep Convolutional Neural Network”. Once after converting the HR images into LR images, the NSSR images are generated by the optimized NSSR. Then the ADWT is used for generating the subbands of both NSSR and HRSB images. The residual image with this information is obtained by the optimized Deep CNN. All the improvements on the algorithms are done by the Opposition-based Barnacles Mating Optimization (O-BMO), with the objective of attaining the multi-objective function concerning the “Peak Signal-to-Noise Ratio (PSNR), and Structural similarity (SSIM) index”. Extensive analysis on benchmark hyperspectral image datasets shows that the proposed model achieves superior performance over typical other existing super-resolution models.

Findings

From the analysis, the overall analysis of the suggested and the conventional super resolution models relies that the PSNR of the improved O-BMO-(NSSR+DWT+CNN) was 38.8% better than bicubic, 11% better than NSSR, 16.7% better than DWT+CNN, 1.3% better than NSSR+DWT+CNN, and 0.5% better than NSSR+FF-SHO-(DWT+CNN). Hence, it has been confirmed that the developed O-BMO-(NSSR+DWT+CNN) is performing well in converting LR images to HR images.

Originality/value

This paper adopts a latest optimization algorithm called O-BMO with optimized Non-negative Structured Sparse Representation (NSSR), Adaptive Discrete Wavelet Transform (ADWT) and Optimized Deep Convolutional Neural Network for developing the enhanced image super-resolution model. This is the first work that uses O-BMO-based Deep CNN for image super-resolution model enhancement.

Article
Publication date: 16 August 2019

Shuangshuang Liu and Xiaoling Li

Conventional image super-resolution reconstruction by the conventional deep learning architectures suffers from the problems of hard training and gradient disappearing. In order…

Abstract

Purpose

Conventional image super-resolution reconstruction by the conventional deep learning architectures suffers from the problems of hard training and gradient disappearing. In order to solve such problems, the purpose of this paper is to propose a novel image super-resolution algorithm based on improved generative adversarial networks (GANs) with Wasserstein distance and gradient penalty.

Design/methodology/approach

The proposed algorithm first introduces the conventional GANs architecture, the Wasserstein distance and the gradient penalty for the task of image super-resolution reconstruction (SRWGANs-GP). In addition, a novel perceptual loss function is designed for the SRWGANs-GP to meet the task of image super-resolution reconstruction. The content loss is extracted from the deep model’s feature maps, and such features are introduced to calculate mean square error (MSE) for the loss calculation of generators.

Findings

To validate the effectiveness and feasibility of the proposed algorithm, a lot of compared experiments are applied on three common data sets, i.e. Set5, Set14 and BSD100. Experimental results have shown that the proposed SRWGANs-GP architecture has a stable error gradient and iteratively convergence. Compared with the baseline deep models, the proposed GANs models have a significant improvement on performance and efficiency for image super-resolution reconstruction. The MSE calculated by the deep model’s feature maps gives more advantages for constructing contour and texture.

Originality/value

Compared with the state-of-the-art algorithms, the proposed algorithm obtains a better performance on image super-resolution and better reconstruction results on contour and texture.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 12 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 4 February 2020

Boquan Liu

This study aims to use resonant surface acoustic wave (SAW) sensors, which have advantages in the harsh application environments, to measure different physical parameters such as…

Abstract

Purpose

This study aims to use resonant surface acoustic wave (SAW) sensors, which have advantages in the harsh application environments, to measure different physical parameters such as temperature, pressure and force. For SAW sensors, the locality in measurement resolution by the effective time is poor, it cannot give the detailed results of SAW echoes.

Design/methodology/approach

To promote the application of SAW sensor, this paper proposes a convex program-based super-resolution measurement method to recover the missing spectral line and enhance frequency resolution.

Findings

The proposed method reduces the reliance on effective time and improves the measurement resolution of SAW sensors. The performance was validated by experiments.

Originality/value

The limited resolution capability restricts the benefit of SAW technology in harsh environments. The proposed method shed light on SAW measurement resolution increase, exploiting its full potential and leading to commercial applications.

Details

Sensor Review, vol. 40 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 2013

Lei Zeng, Xiaofeng Li and Jin Xu

The purpose of this paper is to introduce an improved method for joint training of low‐ and high‐resolution dictionaries in the single image super resolution. With simulations…

Abstract

Purpose

The purpose of this paper is to introduce an improved method for joint training of low‐ and high‐resolution dictionaries in the single image super resolution. With simulations, the proposed method is thereafter evaluated.

Design/methodology/approach

Sparse representations of low‐resolution image patches are used to reconstruct the high‐resolution image patches with high resolution dictionary. By using different factors, the scheme weights the two dictionaries in the high‐ and low‐resolution spaces in the training process. It is reasonable to achieve better reconstructed images with more emphasis on the high‐resolution spaces.

Findings

An improved joint training algorithm based on K‐SVD is developed with flexible weight factors on dictionaries in the high‐ and low‐resolution spaces. From the experiment results, the proposed scheme outperforms the classic bicubic interpolation and neighbor‐embedding learning based method.

Originality/value

By using flexible weight factors in joint training of the dictionaries for super resolution, better reconstruction results can be achieved.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 March 2016

suryanarayana gunnam and Ravindra Dhuli

The purpose of this paper is to present an improved wavelet based approach in single image super resolution (SISR). The proposed method generates high resolution (HR) images by…

Abstract

Purpose

The purpose of this paper is to present an improved wavelet based approach in single image super resolution (SISR). The proposed method generates high resolution (HR) images by preserving the image contrast and edges simultaneously.

Design/methodology/approach

Covariance based interpolation algorithm is employed to obtain an initial estimate of the unknown HR image. The proposed method preserves the image contrast, by applying singular value decomposition (SVD) based correction on the dual-tree complex wavelet transform (DT-CWT) coefficients. In addition, the dual operating mode diffusion based shock filter (DBSF) ensures noise mitigation and edge preservation.

Findings

Experimental results on various test images reveal superiority of the proposed method over the existing SISR techniques in terms of peak signal to noise ratio (PSNR), structural similarity index measure (SSIM) and visual quality.

Originality/value

With SVD based correction, the proposed method preserves the image contrast and also the DBSF operation helps to achieve sharper edges.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 35 no. 3
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 23 August 2019

Haiqing He, Ting Chen, Minqiang Chen, Dajun Li and Penggen Cheng

This paper aims to present a novel approach of image super-resolution based on deep–shallow cascaded convolutional neural networks for reconstructing a clear and high-resolution

Abstract

Purpose

This paper aims to present a novel approach of image super-resolution based on deep–shallow cascaded convolutional neural networks for reconstructing a clear and high-resolution (HR) remote sensing image from a low-resolution (LR) input.

Design/methodology/approach

The proposed approach directly learns the residuals and mapping between simulated LR and their corresponding HR remote sensing images based on deep and shallow end-to-end convolutional networks instead of assuming any specific restored models. Extra max-pooling and up-sampling are used to achieve a multiscale space by concatenating low- and high-level feature maps, and an HR image is generated by combining LR input and the residual image. This model ensures a strong response to spatially local input patterns by using a large filter and cascaded small filters. The authors adopt a strategy based on epochs to update the learning rate for boosting convergence speed.

Findings

The proposed deep network is trained to reconstruct high-quality images for low-quality inputs through a simulated dataset, which is generated with Set5, Set14, Berkeley Segmentation Data set and remote sensing images. Experimental results demonstrate that this model considerably enhances remote sensing images in terms of spatial detail and spectral fidelity and outperforms state-of-the-art SR methods in terms of peak signal-to-noise ratio, structural similarity and visual assessment.

Originality/value

The proposed method can reconstruct an HR remote sensing image from an LR input and significantly improve the quality of remote sensing images in terms of spatial detail and fidelity.

Details

Sensor Review, vol. 39 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 10 July 2024

Tianyun Shi, Zhoulong Wang, Jia You, Pengyue Guo, Lili Jiang, Huijin Fu and Xu Gao

The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail. The operating environment of the high-speed rail is…

Abstract

Purpose

The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail. The operating environment of the high-speed rail is complex, and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters, perimeter intrusion and external environmental hazards. The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.

Design/methodology/approach

In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments, the research status is elaborated, and the latest research progress and achievements of the team are introduced. This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological, perimeter and external environmental situation perception methods for high-speed rail operation.

Findings

Based on the technical route of “situational awareness evaluation warning active control,” a technical system for monitoring the safety of high-speed train operation environments has been formed. Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters, perimeter intrusion and the external environment on high-speed rail safety. These works strongly support the improvement of China’s railway environmental safety guarantee technology.

Originality/value

With the operation of CR450 high-speed trains with a speed of 400 km per hour and the application of high-speed train autonomous driving technology in the future, new and higher requirements have been put forward for the safety of high-speed rail operation environments. The following five aspects of work are urgently needed: (1) Research the single factor disaster mechanism of wind, rain, snow, lightning, etc. for high-speed railways with a speed of 400 kms per hour, and based on this, study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment, revealing the coupling disaster mechanism of multiple influencing factors; (2) Research covers multi-source data fusion methods and associated features such as disaster monitoring data, meteorological information, route characteristics and terrain and landforms, studying the spatio-temporal evolution laws of meteorological disasters, perimeter intrusions and external environmental hazards; (3) In terms of meteorological disaster situation awareness, research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines; (4) In terms of perimeter intrusion, research a multi-modal fusion perception method for typical scenarios of high-speed rail operation in all time, all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and (5) In terms of external environment, based on the existing general network framework for change detection, we will carry out research on change detection and algorithms in the surrounding environment of high-speed rail.

Book part
Publication date: 14 March 2024

Mousumi Bose, Lilly Ye and Yiming Zhuang

Today's marketing is dominated by decision-making based on artificial intelligence and machine learning. This study focuses on one semi- and unsupervised machine learning…

Abstract

Today's marketing is dominated by decision-making based on artificial intelligence and machine learning. This study focuses on one semi- and unsupervised machine learning technique, generative adversarial networks (GANs). GANs are a type of deep learning architecture capable of generating new data similar to the training data that were used to train it, and thus, it is designed to learn a generative model that can produce new samples. GANs have been used in multiple marketing areas, especially in creating images and video and providing customized consumer contents. Through providing a holistic picture of GANs, including its advantage, disadvantage, ethical considerations, and its current application, the study attempts to provide business some strategical orientations, including formulating strong marketing positioning, creating consumer lifetime values, and delivering desired marketing tactics in product, promotion, pricing, and distribution channel. Through using GANs, marketers will create unique experiences for consumers, build strategic focus, and gain competitive advantages. This study is an original endeavor in discussing GANs in marketing, offering fresh insights in this research topic.

Details

The Impact of Digitalization on Current Marketing Strategies
Type: Book
ISBN: 978-1-83753-686-3

Keywords

1 – 10 of over 2000