Search results

1 – 10 of over 38000
To view the access options for this content please click here
Book part
Publication date: 15 March 2021

Brett Lantz

Machine learning and artificial intelligence (AI) have arisen as the availability of larger data sources, statistical methods, and computing power have rapidly and…

Abstract

Machine learning and artificial intelligence (AI) have arisen as the availability of larger data sources, statistical methods, and computing power have rapidly and simultaneously evolved. The transformation is leading to a revolution that will affect virtually every industry. Businesses that are slow to adopt modern data practices are likely to be left behind with little chance to catch up.

The purpose of this chapter is to provide a brief overview of machine learning and AI in the business setting. In addition to providing historical context, the chapter also provides justification for AI investment, even in industries in which data is not the core business function. The means by which computers learn is de-mystified and various algorithms and evaluation methods are presented. Lastly, the chapter considers various ethical and practical consequences of machine learning algorithms after implementation.

Details

The Machine Age of Customer Insight
Type: Book
ISBN: 978-1-83909-697-6

Keywords

To view the access options for this content please click here
Article
Publication date: 16 August 2021

Rajshree Varma, Yugandhara Verma, Priya Vijayvargiya and Prathamesh P. Churi

The rapid advancement of technology in online communication and fingertip access to the Internet has resulted in the expedited dissemination of fake news to engage a…

Abstract

Purpose

The rapid advancement of technology in online communication and fingertip access to the Internet has resulted in the expedited dissemination of fake news to engage a global audience at a low cost by news channels, freelance reporters and websites. Amid the coronavirus disease 2019 (COVID-19) pandemic, individuals are inflicted with these false and potentially harmful claims and stories, which may harm the vaccination process. Psychological studies reveal that the human ability to detect deception is only slightly better than chance; therefore, there is a growing need for serious consideration for developing automated strategies to combat fake news that traverses these platforms at an alarming rate. This paper systematically reviews the existing fake news detection technologies by exploring various machine learning and deep learning techniques pre- and post-pandemic, which has never been done before to the best of the authors’ knowledge.

Design/methodology/approach

The detailed literature review on fake news detection is divided into three major parts. The authors searched papers no later than 2017 on fake news detection approaches on deep learning and machine learning. The papers were initially searched through the Google scholar platform, and they have been scrutinized for quality. The authors kept “Scopus” and “Web of Science” as quality indexing parameters. All research gaps and available databases, data pre-processing, feature extraction techniques and evaluation methods for current fake news detection technologies have been explored, illustrating them using tables, charts and trees.

Findings

The paper is dissected into two approaches, namely machine learning and deep learning, to present a better understanding and a clear objective. Next, the authors present a viewpoint on which approach is better and future research trends, issues and challenges for researchers, given the relevance and urgency of a detailed and thorough analysis of existing models. This paper also delves into fake new detection during COVID-19, and it can be inferred that research and modeling are shifting toward the use of ensemble approaches.

Originality/value

The study also identifies several novel automated web-based approaches used by researchers to assess the validity of pandemic news that have proven to be successful, although currently reported accuracy has not yet reached consistent levels in the real world.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

To view the access options for this content please click here
Book part
Publication date: 5 October 2020

Ayşe Günsel and Mesut Yamen

At the doorsteps of the fourth wave of the industrial revolution, it is compulsory to develop a new understanding regarding the future of human labor based on “Industry…

Abstract

At the doorsteps of the fourth wave of the industrial revolution, it is compulsory to develop a new understanding regarding the future of human labor based on “Industry 4.0” for German manufacturers, and two American concepts: “The Industrial Internet” and “The Internet of Things.” How will the nature of human work be in the digital economy of the forthcoming future? The problem of unemployment and the composition of the labor market, in terms of professional skills, are yet to be waiting for answers. Scientific management is also transforming to answer the emerging requirements of this new era, as “Digital Taylorism” to re-organize work in a techno-centric manner. Accordingly, the aim of this chapter is to examine the nature and the possible opportunities and threats of the digital age and try to develop a digital Taylorism understanding to minimize the negative impacts of digitalism on both individual workers and society in a way that all parts including the manufacturers can fully take the benefit of potential advantages of this new era.

Details

Agile Business Leadership Methods for Industry 4.0
Type: Book
ISBN: 978-1-80043-381-6

Keywords

Abstract

Details

HR without People?
Type: Book
ISBN: 978-1-80117-037-6

Content available
Article
Publication date: 25 October 2019

Ning Yan and Oliver Tat-Sheung Au

The purpose of this paper is to make a correlation analysis between students’ online learning behavior features and course grade, and to attempt to build some effective…

Downloads
4417

Abstract

Purpose

The purpose of this paper is to make a correlation analysis between students’ online learning behavior features and course grade, and to attempt to build some effective prediction model based on limited data.

Design/methodology/approach

The prediction label in this paper is the course grade of students, and the eigenvalues available are student age, student gender, connection time, hits count and days of access. The machine learning model used in this paper is the classical three-layer feedforward neural networks, and the scaled conjugate gradient algorithm is adopted. Pearson correlation analysis method is used to find the relationships between course grade and the student eigenvalues.

Findings

Days of access has the highest correlation with course grade, followed by hits count, and connection time is less relevant to students’ course grade. Student age and gender have the lowest correlation with course grade. Binary classification models have much higher prediction accuracy than multi-class classification models. Data normalization and data discretization can effectively improve the prediction accuracy of machine learning models, such as ANN model in this paper.

Originality/value

This paper may help teachers to find some clue to identify students with learning difficulties in advance and give timely help through the online learning behavior data. It shows that acceptable prediction models based on machine learning can be built using a small and limited data set. However, introducing external data into machine learning models to improve its prediction accuracy is still a valuable and hard issue.

Details

Asian Association of Open Universities Journal, vol. 14 no. 2
Type: Research Article
ISSN: 2414-6994

Keywords

To view the access options for this content please click here
Article
Publication date: 13 March 2017

Samira Khodabandehlou and Mahmoud Zivari Rahman

This paper aims to provide a predictive framework of customer churn through six stages for accurate prediction and preventing customer churn in the field of business.

Downloads
2689

Abstract

Purpose

This paper aims to provide a predictive framework of customer churn through six stages for accurate prediction and preventing customer churn in the field of business.

Design/methodology/approach

The six stages are as follows: first, collection of customer behavioral data and preparation of the data; second, the formation of derived variables and selection of influential variables, using a method of discriminant analysis; third, selection of training and testing data and reviewing their proportion; fourth, the development of prediction models using simple, bagging and boosting versions of supervised machine learning; fifth, comparison of churn prediction models based on different versions of machine-learning methods and selected variables; and sixth, providing appropriate strategies based on the proposed model.

Findings

According to the results, five variables, the number of items, reception of returned items, the discount, the distribution time and the prize beside the recency, frequency and monetary (RFM) variables (RFMITSDP), were chosen as the best predictor variables. The proposed model with accuracy of 97.92 per cent, in comparison to RFM, had much better performance in churn prediction and among the supervised machine learning methods, artificial neural network (ANN) had the highest accuracy, and decision trees (DT) was the least accurate one. The results show the substantially superiority of boosting versions in prediction compared with simple and bagging models.

Research limitations/implications

The period of the available data was limited to two years. The research data were limited to only one grocery store whereby it may not be applicable to other industries; therefore, generalizing the results to other business centers should be used with caution.

Practical implications

Business owners must try to enforce a clear rule to provide a prize for a certain number of purchased items. Of course, the prize can be something other than the purchased item. Business owners must accept the items returned by the customers for any reasons, and the conditions for accepting returned items and the deadline for accepting the returned items must be clearly communicated to the customers. Store owners must consider a discount for a certain amount of purchase from the store. They have to use an exponential rule to increase the discount when the amount of purchase is increased to encourage customers for more purchase. The managers of large stores must try to quickly deliver the ordered items, and they should use equipped and new transporting vehicles and skilled and friendly workforce for delivering the items. It is recommended that the types of services, the rules for prizes, the discount, the rules for accepting the returned items and the method of distributing the items must be prepared and shown in the store for all the customers to see. The special services and reward rules of the store must be communicated to the customers using new media such as social networks. To predict the customer behaviors based on the data, the future researchers should use the boosting method because it increases efficiency and accuracy of prediction. It is recommended that for predicting the customer behaviors, particularly their churning status, the ANN method be used. To extract and select the important and effective variables influencing customer behaviors, the discriminant analysis method can be used which is a very accurate and powerful method for predicting the classes of the customers.

Originality/value

The current study tries to fill this gap by considering five basic and important variables besides RFM in stores, i.e. prize, discount, accepting returns, delay in distribution and the number of items, so that the business owners can understand the role services such as prizes, discount, distribution and accepting returns play in retraining the customers and preventing them from churning. Another innovation of the current study is the comparison of machine-learning methods with their boosting and bagging versions, especially considering the fact that previous studies do not consider the bagging method. The other reason for the study is the conflicting results regarding the superiority of machine-learning methods in a more accurate prediction of customer behaviors, including churning. For example, some studies introduce ANN (Huang et al., 2010; Hung and Wang, 2004; Keramati et al., 2014; Runge et al., 2014), some introduce support vector machine ( Guo-en and Wei-dong, 2008; Vafeiadis et al., 2015; Yu et al., 2011) and some introduce DT (Freund and Schapire, 1996; Qureshi et al., 2013; Umayaparvathi and Iyakutti, 2012) as the best predictor, confusing the users of the results of these studies regarding the best prediction method. The current study identifies the best prediction method specifically in the field of store businesses for researchers and the owners. Moreover, another innovation of the current study is using discriminant analysis for selecting and filtering variables which are important and effective in predicting churners and non-churners, which is not used in previous studies. Therefore, the current study is unique considering the used variables, the method of comparing their accuracy and the method of selecting effective variables.

Details

Journal of Systems and Information Technology, vol. 19 no. 1/2
Type: Research Article
ISSN: 1328-7265

Keywords

To view the access options for this content please click here
Article
Publication date: 4 November 2014

Ahmad Mozaffari, Nasser Lashgarian Azad and Alireza Fathi

The purpose of this paper is to demonstrate the applicability of swarm and evolutionary techniques for regularized machine learning. Generally, by defining a proper…

Abstract

Purpose

The purpose of this paper is to demonstrate the applicability of swarm and evolutionary techniques for regularized machine learning. Generally, by defining a proper penalty function, regularization laws are embedded into the structure of common least square solutions to increase the numerical stability, sparsity, accuracy and robustness of regression weights. Several regularization techniques have been proposed so far which have their own advantages and disadvantages. Several efforts have been made to find fast and accurate deterministic solvers to handle those regularization techniques. However, the proposed numerical and deterministic approaches need certain knowledge of mathematical programming, and also do not guarantee the global optimality of the obtained solution. In this research, the authors propose the use of constraint swarm and evolutionary techniques to cope with demanding requirements of regularized extreme learning machine (ELM).

Design/methodology/approach

To implement the required tools for comparative numerical study, three steps are taken. The considered algorithms contain both classical and swarm and evolutionary approaches. For the classical regularization techniques, Lasso regularization, Tikhonov regularization, cascade Lasso-Tikhonov regularization, and elastic net are considered. For swarm and evolutionary-based regularization, an efficient constraint handling technique known as self-adaptive penalty function constraint handling is considered, and its algorithmic structure is modified so that it can efficiently perform the regularized learning. Several well-known metaheuristics are considered to check the generalization capability of the proposed scheme. To test the efficacy of the proposed constraint evolutionary-based regularization technique, a wide range of regression problems are used. Besides, the proposed framework is applied to a real-life identification problem, i.e. identifying the dominant factors affecting the hydrocarbon emissions of an automotive engine, for further assurance on the performance of the proposed scheme.

Findings

Through extensive numerical study, it is observed that the proposed scheme can be easily used for regularized machine learning. It is indicated that by defining a proper objective function and considering an appropriate penalty function, near global optimum values of regressors can be easily obtained. The results attest the high potentials of swarm and evolutionary techniques for fast, accurate and robust regularized machine learning.

Originality/value

The originality of the research paper lies behind the use of a novel constraint metaheuristic computing scheme which can be used for effective regularized optimally pruned extreme learning machine (OP-ELM). The self-adaption of the proposed method alleviates the user from the knowledge of the underlying system, and also increases the degree of the automation of OP-ELM. Besides, by using different types of metaheuristics, it is demonstrated that the proposed methodology is a general flexible scheme, and can be combined with different types of swarm and evolutionary-based optimization techniques to form a regularized machine learning approach.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 7 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

To view the access options for this content please click here
Article
Publication date: 22 September 2021

Samar Ali Shilbayeh and Sunil Vadera

This paper aims to describe the use of a meta-learning framework for recommending cost-sensitive classification methods with the aim of answering an important question…

Abstract

Purpose

This paper aims to describe the use of a meta-learning framework for recommending cost-sensitive classification methods with the aim of answering an important question that arises in machine learning, namely, “Among all the available classification algorithms, and in considering a specific type of data and cost, which is the best algorithm for my problem?”

Design/methodology/approach

This paper describes the use of a meta-learning framework for recommending cost-sensitive classification methods for the aim of answering an important question that arises in machine learning, namely, “Among all the available classification algorithms, and in considering a specific type of data and cost, which is the best algorithm for my problem?” The framework is based on the idea of applying machine learning techniques to discover knowledge about the performance of different machine learning algorithms. It includes components that repeatedly apply different classification methods on data sets and measures their performance. The characteristics of the data sets, combined with the algorithms and the performance provide the training examples. A decision tree algorithm is applied to the training examples to induce the knowledge, which can then be used to recommend algorithms for new data sets. The paper makes a contribution to both meta-learning and cost-sensitive machine learning approaches. Those both fields are not new, however, building a recommender that recommends the optimal case-sensitive approach for a given data problem is the contribution. The proposed solution is implemented in WEKA and evaluated by applying it on different data sets and comparing the results with existing studies available in the literature. The results show that a developed meta-learning solution produces better results than METAL, a well-known meta-learning system. The developed solution takes the misclassification cost into consideration during the learning process, which is not available in the compared project.

Findings

The proposed solution is implemented in WEKA and evaluated by applying it to different data sets and comparing the results with existing studies available in the literature. The results show that a developed meta-learning solution produces better results than METAL, a well-known meta-learning system.

Originality/value

The paper presents a major piece of new information in writing for the first time. Meta-learning work has been done before but this paper presents a new meta-learning framework that is costs sensitive.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Content available
Article
Publication date: 3 August 2020

Djordje Cica, Branislav Sredanovic, Sasa Tesic and Davorin Kramar

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects…

Abstract

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2210-8327

Keywords

To view the access options for this content please click here
Book part
Publication date: 30 September 2020

Madhulika Bhatia, Shubham Sharma, Madhurima Hooda and Narayan C. Debnath

Recent research advances in artificial intelligence, machine learning, and neural networks are becoming essential tools for building a wide range of intelligent…

Abstract

Recent research advances in artificial intelligence, machine learning, and neural networks are becoming essential tools for building a wide range of intelligent applications. Moreover, machine learning helps to automate analytical model building. Machine learning based frameworks and approaches allow making well-informed and intelligent choices for improving daily eating habits and extension of healthy lifestyle. This book chapter presents a new machine learning approach for meal classification and assessment of nutrients values based on weather conditions along with new and innovative ideas for further study and research on health care-related applications.

Details

Big Data Analytics and Intelligence: A Perspective for Health Care
Type: Book
ISBN: 978-1-83909-099-8

Keywords

1 – 10 of over 38000