Search results

1 – 10 of 279
Article
Publication date: 6 August 2021

A. Valli Bhasha and B.D. Venkatramana Reddy

The problems of Super resolution are broadly discussed in diverse fields. Rather than the progression toward the super resolution models for real-time images, operating…

Abstract

Purpose

The problems of Super resolution are broadly discussed in diverse fields. Rather than the progression toward the super resolution models for real-time images, operating hyperspectral images still remains a challenging problem.

Design/methodology/approach

This paper aims to develop the enhanced image super-resolution model using “optimized Non-negative Structured Sparse Representation (NSSR), Adaptive Discrete Wavelet Transform (ADWT), and Optimized Deep Convolutional Neural Network”. Once after converting the HR images into LR images, the NSSR images are generated by the optimized NSSR. Then the ADWT is used for generating the subbands of both NSSR and HRSB images. The residual image with this information is obtained by the optimized Deep CNN. All the improvements on the algorithms are done by the Opposition-based Barnacles Mating Optimization (O-BMO), with the objective of attaining the multi-objective function concerning the “Peak Signal-to-Noise Ratio (PSNR), and Structural similarity (SSIM) index”. Extensive analysis on benchmark hyperspectral image datasets shows that the proposed model achieves superior performance over typical other existing super-resolution models.

Findings

From the analysis, the overall analysis of the suggested and the conventional super resolution models relies that the PSNR of the improved O-BMO-(NSSR+DWT+CNN) was 38.8% better than bicubic, 11% better than NSSR, 16.7% better than DWT+CNN, 1.3% better than NSSR+DWT+CNN, and 0.5% better than NSSR+FF-SHO-(DWT+CNN). Hence, it has been confirmed that the developed O-BMO-(NSSR+DWT+CNN) is performing well in converting LR images to HR images.

Originality/value

This paper adopts a latest optimization algorithm called O-BMO with optimized Non-negative Structured Sparse Representation (NSSR), Adaptive Discrete Wavelet Transform (ADWT) and Optimized Deep Convolutional Neural Network for developing the enhanced image super-resolution model. This is the first work that uses O-BMO-based Deep CNN for image super-resolution model enhancement.

Article
Publication date: 10 May 2019

Kumar Kaushik Ranjan, Sandeep Kumar, Amit Tyagi and Ambuj Sharma

The real challenge in the solution of contact problems is the lack of an optimal adaptive scheme. As the contact zone is a priori unknown, successive refinement and iterative…

Abstract

Purpose

The real challenge in the solution of contact problems is the lack of an optimal adaptive scheme. As the contact zone is a priori unknown, successive refinement and iterative method are necessary to obtain a high-accuracy solution. The purpose of this paper is to provide an optimal adaptive scheme based on second-generation finite element wavelets for the solution of non-linear variational inequality of the contact problem.

Design/methodology/approach

To generate an elementary multi-resolution mesh, the authors used hierarchical bases (HB) composed of Lagrange finite element interpolation functions. These HB functions are customized using second-generation wavelet techniques for a fast convergence rate. At each step of the algorithm, the active set method along with mesh adaptation is used for solving the constrained minimization problem of contact case. Wavelet coefficients-based error indicators are used, and computation is focused on mesh zones with a high error indication. The authors take advantage of the wavelet transform to develop a parameter-free adaptive scheme to generate an appropriate and optimal mesh.

Findings

Adaptive wavelet Galerkin scheme (AWGS), a newly developed method for multi-scale mesh adaptivity in this work, is a combination of the second-generation wavelet transform and finite element method and significantly improves the accuracy of the results without approximating an additional problem of error estimation equations. A comparative study is performed taking a solution on a highly refined mesh and results are generated using AWGS.

Practical implications

The proposed adaptive technique can be utilized in the simulation of mechanical and biomechanical structures where multiple bodies come into contact with each other. The algorithm of the method is easy to implement and found to be successful in producing a sufficiently accurate solution with relatively less number of mesh nodes.

Originality/value

Although many error estimation techniques have been developed over the past several years to solve contact problems adaptively, because of boundary non-linearity development, a reliable error estimator needs further investigation. The present study attempts to resolve this problem without having to recompute the entire solution on a new mesh.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 June 2023

Haylim Chha and Yongbo Peng

In real life, excitations are highly non-stationary in frequency and amplitude, which easily induces resonant vibration to structural responses. Conventional control algorithms in…

3065

Abstract

Purpose

In real life, excitations are highly non-stationary in frequency and amplitude, which easily induces resonant vibration to structural responses. Conventional control algorithms in this case cannot guarantee cost-effective control effort and efficient structural response alleviation. To this end, this paper proposes a novel adaptive linear quadratic regulator (LQR) by integrating wavelet transform and genetic algorithm (GA).

Design/methodology/approach

In each time interval, multiresolution analysis of real-time structural responses returns filtered time signals dominated by different frequency bands. Minimization of cost function in each frequency band obtains control law and gain matrix that depend on temporal-frequency band, so suppressing resonance-induced filtered response signal can be directly achieved by regulating gain matrix in the temporal-frequency band, leading to emphasizing cost-function weights on control and state. To efficiently subdivide gain matrices in resonant and normal frequency bands, the cost-function weights are optimized by a developed procedure associated to genetic algorithm. Single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) structures subjected to near- and far-fault ground motions are studied.

Findings

Resonant band requires a larger control force than non-resonant band to decay resonance-induced peak responses. The time-varying cost-function weights generate control force more cost-effective than time-invariant ones. The scheme outperforms existing control algorithms and attains the trade-off between response suppression and control force under non-stationary excitations.

Originality/value

Proposed control law allocates control force amounts depending upon resonant or non-resonant band in each time interval. Cost-function weights and wavelet decomposition level are formulated in an elegant manner. Genetic algorithm-based optimization cost-efficiently results in minimizing structural responses.

Article
Publication date: 1 March 1997

P.I.J. Keeton and F.S. Schlindwein

Provides an introduction into wavelets and illustrates their application with two examples. The wavelet transform provides the analyst with a scaleable time‐frequency…

1028

Abstract

Provides an introduction into wavelets and illustrates their application with two examples. The wavelet transform provides the analyst with a scaleable time‐frequency representation of the signal, which may uncover details not evidenced by conventional signal processing techniques. The signals used in this paper are Doppler ultrasound recordings of blood flow velocity taken from the internal carotid artery and the femoral artery. Shows how wavelets can be used as an alternative signal processing tool to the short time Fourier transform for the extraction of the time‐frequency distribution of Doppler ultrasound signals. Implements wavelet‐based adaptive filtering for the extraction of maximum blood velocity envelopes in the post processing of Doppler signals.

Details

Sensor Review, vol. 17 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 September 2018

Jianhua Cai

This paper aims to explore a new wavelet adaptive threshold de-noising method to resolve the shortcomings of wavelet hard-threshold method and wavelet soft-threshold method, which…

Abstract

Purpose

This paper aims to explore a new wavelet adaptive threshold de-noising method to resolve the shortcomings of wavelet hard-threshold method and wavelet soft-threshold method, which are usually used in gear fault diagnosis.

Design/methodology/approach

A new threshold function and a new determined method of threshold for each layer are proposed. The principle and the implementation of the algorithm are given. The simulated signal and the measured gear fault signal are analyzed, and the obtained results are compared with those from wavelet soft-threshold method, wavelet hard-threshold method and wavelet modulus maximum method.

Findings

The presented wavelet adaptive threshold method overcomes the defects of the traditional wavelet threshold method, and it can effectively eliminate the noise hidden in the gear fault signal at different decomposition scales. It provides more accurate information for the further fault diagnosis.

Originality/value

A new threshold function is adopted and the multi-resolution unbiased risk estimation is used to determine the adaptive threshold, which overcomes the defect of the traditional wavelet method.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 May 2014

Zhijie Wen, Junjie Cao, Xiuping Liu and Shihui Ying

Fabric defects detection is vital in the automation of textile industry. The purpose of this paper is to develop and implement a new fabric defects detection method based on…

Abstract

Purpose

Fabric defects detection is vital in the automation of textile industry. The purpose of this paper is to develop and implement a new fabric defects detection method based on adaptive wavelet.

Design/methodology/approach

Fabric defects can be regarded as the abrupt features of textile images with uniform background textures. Wavelets have compact support and can represent these textures. When there is an abrupt feature existed, the response is totally different with the response of the background textures, so wavelets can detect these abrupt features. This method designs the appropriate wavelet bases for different fabric images adaptively. The defects can be detected accurately.

Findings

The proposed method achieves accurate detection of fabric defects. The experimental results suggest that the approach is effective.

Originality/value

This paper develops an appropriate method to design wavelet filter coefficients for detecting fabric defects, which is called adaptive wavelet. And it is helpful to realize the automation of textile industry.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 3 August 2020

Jihad Maulana Akbar and De Rosal Ignatius Moses Setiadi

Current technology makes it easy for humans to take an image and convert it to digital content, but sometimes there is additional noise in the image so it looks damaged. The…

Abstract

Current technology makes it easy for humans to take an image and convert it to digital content, but sometimes there is additional noise in the image so it looks damaged. The damage that often occurs, like blurring and excessive noise in digital images, can certainly affect the meaning and quality of the image. Image restoration is a process used to restore the image to its original state before the image damage occurs. In this research, we proposed an image restoration method by combining Wavelet transformation and Akamatsu transformation. Based on previous research Akamatsu's transformation only works well on blurred images. In order not to focus solely on blurry images, Akamatsu's transformation will be applied based on Wavelet transformations on high-low (HL), low-high (LH), and high-high (HH) subunits. The result of the proposed method will be comparable with the previous methods. PSNR is used as a measure of image quality restoration. Based on the results the proposed method can improve the quality of the restoration on image noise, such as Gaussian, salt and pepper, and also works well on blurred images. The average increase is around 2 dB based on the PSNR calculation.

Details

Applied Computing and Informatics, vol. 19 no. 3/4
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 26 November 2021

K. Upendra Raju and N. Amutha Prabha

Steganography is a data hiding technique used in the data security. while transmission of data through channel, no guarantee that the data is transmitted safely or not. Variety of…

Abstract

Purpose

Steganography is a data hiding technique used in the data security. while transmission of data through channel, no guarantee that the data is transmitted safely or not. Variety of data security techniques exists such as patch work, low bit rate data hiding, lossy compression etc. This paper aims to increase the security and robustness.

Design/methodology/approach

This paper describes, an approach for multiple images steganography that is oriented on the combination of lifting wavelet transform (LWT) and discrete cosine transform (DCT). Here, we have one cover image and two secret images. The cover image is applied with one of the different noises like Gaussian, Salt & Pepper, Poisson, and speckle noises and converted into different color spaces of YCbCr, HSV, and Lab.

Findings

Due to the vast development of Internet access and multimedia technology, it becomes very simple to hack and trace secret information. Using this steganography process in reversible data hiding (RDH) helps to prevent secret information.

Originality/value

We can divide the color space converted image into four sub-bands of images by using lifting wavelet transform. By selecting lower bands, the discrete cosine transform is computed for hiding two secret images into the cover image and again one of the transformed secret images is converted by using Arnold transform to get the encrypted/embedded/encoded image. To extract the Stego image, we can apply the revertible operation. For comparing the results, we can calculate PSNR, SSIM, and MSE values by applying the same process for all color spaces of YCbCr, HSV, and Lab. The experimental results give better performance when compared to all other spaces.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 1 January 2005

S. D'Heedene, K. Amaratunga and J. Castrillón‐Candás

This paper presents a novel framework for solving elliptic partial differential equations (PDEs) over irregularly spaced meshes on bounded domains.

Abstract

Purpose

This paper presents a novel framework for solving elliptic partial differential equations (PDEs) over irregularly spaced meshes on bounded domains.

Design/methodology/approach

Second‐generation wavelet construction gives rise to a powerful generalization of the traditional hierarchical basis (HB) finite element method (FEM). A framework based on piecewise polynomial Lagrangian multiwavelets is used to generate customized multiresolution bases that have not only HB properties but also additional qualities.

Findings

For the 1D Poisson problem, we propose – for any given order of approximation – a compact closed‐form wavelet basis that block‐diagonalizes the stiffness matrix. With this wavelet choice, all coupling between the coarse scale and detail scales in the matrix is eliminated. In contrast, traditional higher‐order (n>1) HB do not exhibit this property. We also achieve full scale‐decoupling for the 2D Poisson problem on an irregular mesh. No traditional HB has this quality in 2D.

Research limitations/implications

Similar techniques may be applied to scale‐decouple the multiresolution finite element (FE) matrices associated with more general elliptic PDEs.

Practical implications

By decoupling scales in the FE matrix, the wavelet formulation lends itself particularly well to adaptive refinement schemes.

Originality/value

The paper explains second‐generation wavelet construction in a Lagrangian FE context. For 1D higher‐order and 2D first‐order bases, we propose a particular choice of wavelet, customized to the Poisson problem. The approach generalizes to other elliptic PDE problems.

Details

Engineering Computations, vol. 22 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 October 2018

Hadi Minbashian, Hojatollah Adibi and Mehdi Dehghan

This paper aims to propose an adaptive method for the numerical solution of the shallow water equations (SWEs). The authors provide an arbitrary high-order method using high-order…

Abstract

Purpose

This paper aims to propose an adaptive method for the numerical solution of the shallow water equations (SWEs). The authors provide an arbitrary high-order method using high-order spline wavelets. Furthermore, they use a non-linear shock capturing (SC) diffusion which removes the necessity of post-processing.

Design/methodology/approach

The authors use a space-time weak formulation of SWEs which exploits continuous Galerkin (cG) in space and discontinuous Galerkin (dG) in time allowing time stepping, also known as cGdG. Such formulations along with SC term have recently been proved to ensure the stability of fully discrete schemes without scarifying the accuracy. However, the resulting scheme is expensive in terms of number of degrees of freedom (DoFs). By using natural adaptivity of wavelet expansions, the authors devise an adaptive algorithm to reduce the number of DoFs.

Findings

The proposed algorithm uses DoFs in a dynamic way to capture the shocks in all time steps while keeping the representation of approximate solution sparse. The performance of the proposed scheme is shown through some numerical examples.

Originality/value

An incorporation of wavelets for adaptivity in space-time weak formulations applied for SWEs is proposed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 279