Search results

1 – 10 of 824
Article
Publication date: 29 August 2021

Naren Shankar R., Ganesan V.G., Dilip Raja N., Sathish Kumar K. and Vijayaraja K.

The effect of increasing lip thickness (LT) and Mach number on subsonic co-flowing Jet (CFJ) decay at subsonic and correctly expanded sonic Mach numbers has been analysed…

Abstract

Purpose

The effect of increasing lip thickness (LT) and Mach number on subsonic co-flowing Jet (CFJ) decay at subsonic and correctly expanded sonic Mach numbers has been analysed experimentally and numerically in this study. This study aims to a critical LT below which mixing enhances and above which mixing inhibits.

Design/methodology/approach

LT is the distance, separating the primary nozzle and the secondary duct, present in the co-flowing nozzle. The CFJ with LT ranging from 2 mm to 150 mm at jet exit Mach numbers of 0.6, 0.8 and 1.0 were studied in detail. The CFJ with 2 mm LT is used for comparison. Centreline total pressure decay, centreline static pressure decay and near field flow behaviour were analysed.

Findings

The result shows that the mixing enhances until a critical limit and a further increase in the LT does not show any variation in the jet mixing. Beyond this critical limit, the secondary jet has a detrimental effect on the primary jet, which deteriorates the process of mixing. The CFJ within the critical limit experiences a significantly higher mixing. The effect of the increase in the Mach number has marginal variation in the total pressure and significant variation in static pressure along the jet axis.

Practical implications

In this study, the velocity ratio (VR) is maintained constant and the bypass ratio (BR) was varied from low value to very high values for subsonic and correctly expanded sonic. Presently, commercial aircraft engine operates under these Mach numbers and low to ultra-high BR. Hence, the present study becomes essential.

Originality/value

This is the first effort to find the critical value of LT for a constant VR for a Mach number range of 0.6 to 1.0, compressible CFJ. The CFJs with constant VR of unity and varying LT, in these Mach number range, have not been studied in the past.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 January 2023

Naren Shankar Radha Krishnan, Irish Angelin S., Ganesan V.G. and Sathish Kumar K.

In comparison to a nozzle with a larger/finite separation distance (Thanigaiarasu et al., 2019), a thin-lip nozzle (Srinivasarao et al., 2017) minimizes drag. Coaxial nozzles with…

Abstract

Purpose

In comparison to a nozzle with a larger/finite separation distance (Thanigaiarasu et al., 2019), a thin-lip nozzle (Srinivasarao et al., 2017) minimizes drag. Coaxial nozzles with thin lips are an appropriate tool for studying high subsonic jets because it does not create a dominant re-circulation zone. This study aims to analyze the characteristic of separation distances, between primary and secondary nozzles, within the range of 0.7–3.2 mm which can be considered a thin lip.

Design/methodology/approach

A separation distance of 0.7  (Papamoschou, 2004), 1.7  and 2.65 mm (Lovaraju and Rathakrishnan, 2011) is considered for the present study. The main nozzle exit Mach number is maintained at a subsonic condition of Mach 0.6, and the co-flowing nozzle exit Mach number is varied from 0% (secondary jet stopped/single jet) to 100% (Mach 0.6) in steps of 20% with respect to the main nozzle exit Mach number. A comparison was made between these velocity ratios for all three lip thicknesses in the present study. Design mesh and analysis were done by using Gambit 2.6.4 and Fluent 6.12. Velocity contours and turbulence contours were studied for qualitative analysis.

Findings

When lip thickness increases from 0.7 to 2.65 mm, the potential core length (PCL) of the primary jet decreases marginally. Additionally, the PCL of the primary jet elongates significantly as the velocity ratio increases. The primary shear layer is dominant at 20% co-flow (20 PCF), less dominant at 60% co-flow (60 PCF) and almost disappeared at 100% co-flow (100 PCF). Concurrently, the secondary shear layer almost disappeared in 20 PCF, dominant in 60 PCF and more dominant in 100 PCF. Different zones such as initial merging, intermediate and fully merged zones are quantitatively and qualitatively analyzed.

Practical implications

Co-flow nozzle is used in turbofan engine exhaust. The scaled-down model of a turbofan engine has been analyzed. Core length is directly proportional to the jet noise. The PCL signifies the jet noise reduction in a high-speed jet. For a low-velocity ratio, the potential core is reduced and hence can reduce the jet noise. At the same time, as the velocity ratio increases, the mass flow rate of the coaxial increases. The increase in the mass flow increases the thrust of the engine. The aircraft engine designer should analyze the requirement of the aircraft and choose the optimal velocity ratio coaxial nozzle for the engine exhaust (Papamoschou, 2004).

Originality/value

There have been many research studies carried out previously at various lip thickness such as 0.4  (Georgiadis, 2003), 0.7  (Papamoschou, 2004), 1.5  (Srinivasarao et al., 2014a), 1.7  (Sharma et al., 2008), 2  (Naren, Thanigaiarasu and Rathakrishnan, 2016), 2.65  (Lovaraju and Rathakrishnan, 2011), 3  (Inturiet al., 2022) and 3.2 mm (Perumal et al., 2020). However, there is no proper study to vary the lip thickness in this range from 0.7 to 3.2 mm to understand the flow behavior of a co-flowing jet.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 September 2021

Dawn Pradeeb S.A., Subramanian Thanigaiarasu and Nagarajakrishnan Premanand

Control over large-scale coherent structures and stream-wise vortices lead to enhanced entrainment/conservation of the jet which is desirable for most free jet applications such…

Abstract

Purpose

Control over large-scale coherent structures and stream-wise vortices lead to enhanced entrainment/conservation of the jet which is desirable for most free jet applications such as design of combustion chamber in jet engines and flame length elongation of welding torch used for metal cutting.

Design/methodology/approach

A co-flow nozzle with lip thickness of 2 mm, between the primary (inner) and secondary (outer) flow, is selected. Three nozzle combinations are used, i.e. C–C (circle–circle), C–E (circle–ellipse) and C–S (circle–square) for acquiring comparative data. For these nozzle combinations, inner nozzle exit plane is kept as a circle, whereas the outer nozzle exit planes are varied to circle, ellipse and square. The exit plane area of outer nozzle for the nozzle combinations has equivalent diameter, De. The nozzles are fabricated in a way that the outer nozzle can be rotated along the longitudinal axis, keeping the inner nozzle intact.

Findings

The C–C nozzle combination is effective in low Mach number regime in decaying the jet, when the rotational component is introduced. Around 30% reduction in the jet core length is observed for the C–C nozzle combinations without any lip. The C–E nozzle shows sedative result in decaying or preserving the jet. The C–S nozzle combination shows interesting phenomenon, whereby the low subsonic case tends to conserve the jet by 15% and the higher subsonic case tends to decay the jet by 10%.

Originality/value

The developed nozzle systems show both conservative and destructive effect on the jet, which is desirable for the mentioned applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 September 2021

Vignesh Kumar Murugesan, Aravindh Kumar Suseela Moorthi and Ganapathy Subramanian L. Ramachandran

The purpose of this study is to understand experimentally the mixing characteristics of a two-stream exhaust system with a supersonic Mach 1.5 primary jet that exits the…

Abstract

Purpose

The purpose of this study is to understand experimentally the mixing characteristics of a two-stream exhaust system with a supersonic Mach 1.5 primary jet that exits the rectangular C-D nozzle surrounded by a sonic secondary jet from a convergent rectangular nozzle by varying the aspect ratio (AR = 2 and 3) similar to those that can be available for future high-speed commercial aircraft.

Design/methodology/approach

This paper focuses on the experimental results of effects of AR at various expansion levels of jets issued/delivered from a central rectangular convergent-divergent nozzle of AR 2 and 3 surrounded by a coflow from a convergent rectangular sonic nozzle. The lip thickness of the primary nozzle is 2.2 mm. various nozzle pressure ratios (NPRs) ranging from 2, 3, 3.69 and 4 were chosen for pressure measurements.

Findings

For all the NPRs, AR 3 had a shorter core than AR 2. Also, AR 3 was found to decay faster in the transition and fully developed zones. The lateral plots show that the AR has an influence on the jet spread.

Originality/value

The structure of waves existing in the potential core of the rectangular coflow jet along with the major and minor axis planes was visualized by the shadowgraph technique.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 November 2016

Abdelkader Frendi and Michael R. Brown

The purpose of this paper is to carry out an extensive numerical study in order to understand the flow structures and the resulting noise generated by a supersonic impinging jet

Abstract

Purpose

The purpose of this paper is to carry out an extensive numerical study in order to understand the flow structures and the resulting noise generated by a supersonic impinging jet on a flat plate. One of the parameters varied in this study is the distance between the jet exit plane and the flat plate.

Design/methodology/approach

Because of the unsteady nature of the problem a time-dependent computation is carried out using the detached eddy simulation turbulence model. The OVERFLOW 2 CFD code was used with a highly resolved grid and small time steps.

Findings

The authors found that as the separation distance increases, the dominant frequencies in the noise spectrum decrease. In addition, the relative strength of the various frequencies to each other changes with changing distance, indicating the changing modes of the jet. The CFD results indicate a strong interaction between the acoustic waves emanating from the impingement plate and the jet plume. This feedback mechanism is responsible for destabilizing the jet shear layer leading to the jet changing modes. The computed near field spectra, convection velocities of the jet vortical structures and mean jet centerline velocity profile are in good agreement with experimental measurements. The results also show very high sound pressure levels all over the impingement plate but especially near the impingement point. These levels, if sustained, are detrimental to both human operators as well as the surrounding structures.

Research limitations/implications

Given the large-scale nature of the computations carried out, it is very costly to run the computations long enough to collect a good, statistically steady time sample to achieve a low frequency bandwidth resolution. Such a long time sample could actually improve the results in terms of frequency resolution and obtained an even better agreement with experiments. Off course there is always the issue of grid resolution as well, but given the good agreement with experiments that the authors obtained, the authors are confident in their results.

Practical implications

The practical implications of the results the authors obtained are significant in that, the authors now know that hybrid RANS-large eddy simulation methods can be used for this complex, unsteady engineering problems. In addition, the results also show the high noise level both on the impingement surface and in the surroundings of the jet. This could have a negative impact on the structural integrity of the flat surface.

Social implications

Noisy environments are never desirable anywhere especially in places where human operations take place. Therefore, given the high noise levels obtained in the simulations and confirmed by experiments, any human presence around the jet will be harmful to hearing and precautions need to be taken.

Originality/value

This is a physics-based study; i.e. understanding the physical phenomena involved in supersonic jet impingement. Of particular interest is the interaction of the jet shear layer with the acoustic waves emanating from the impingement area. This feedback loop is found to be responsible for intensifying the instability of the jet shear layer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 August 2022

Ivan Kostić, Dragoljub Tanović, Olivera Kostić, Ahmed Ali Irhayim Abubaker and Aleksandar Simonović

Unmanned aerial vehicles (UAV) with remote and/or automated flight and mission controls have replaced airplanes with pilots in many important roles. This study aims to deal with…

Abstract

Purpose

Unmanned aerial vehicles (UAV) with remote and/or automated flight and mission controls have replaced airplanes with pilots in many important roles. This study aims to deal with computational fluid dynamics (CFD) analysis and development of the aerodynamic configuration of a multi-purpose UAV for low and medium altitudes. The main aerodynamic requirement was the application of the tandem wing (TW) concept, where both wings generate a positive lift and act as primary lifting devices.

Design/methodology/approach

Initial design analyses of the UAV’s aerodynamic configuration were performed using ANSYS Fluent. In previous work in Fluent, the authors established a calculation model that has been verified by experiments and, with minor adjustments, could be applied for subsonic, transonic and supersonic flow analyses.

Findings

The design evolved through eight development configurations, where the latest V8 satisfied all the posted longitudinal aerodynamic requirements. Both wings generate a substantial amount of positive lift, whereas the initial stall occurs first on the front wing, generating a natural nose-down stall recovery tendency. In the cruising flight regime, this configuration has the desired range of longitudinal static stability and its centre of pressure is in close proximity to the centre of gravity.

Practical implications

The intermediate development version V8 with proper longitudinal aerodynamic characteristics presents a good starting point for future development steps that will involve the optimization of lateral-directional aerodynamics.

Originality/value

Using contemporary CFD tools, a novel and original TW aerodynamic configuration have evolved within eight development stages, not being based on or derived from any existing designs.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 March 2017

Aleksandar Knezevic, Ljubisa Vasov, Slavisa Vlacic and Cedomir Kostic

The purpose of this paper is to define conditions under which improved availability of fleet of G-4 jet trainers is obtained, and optimization of intermediate-level maintenance…

Abstract

Purpose

The purpose of this paper is to define conditions under which improved availability of fleet of G-4 jet trainers is obtained, and optimization of intermediate-level maintenance through imperfect maintenance model application. This research has been conducted based on available knowledge, and experience gained by performing intermediate-level maintenance of Serbian Air Force aircrafts.

Design/methodology/approach

Analysis of the data collected from daily maintenance reports, and the analysis of maintenance technology and organization, was performed. Based on research results, a reliability study was performed. Implementation of imperfect maintenance with its models of maintenance policies (especially a quasi-renewal process and its treating of reliability and optimal maintenance) was proposed to define new maintenance parameters so that the greater level of availability could be achieved.

Findings

The proposed methodology can potentially be applied as a simple tool to estimate the present maintenance parameters and to quickly point out some deficiencies in the analyzed maintenance organization. Validation of this process was done by conducting a reliability case study of G-4 jet trainer fleet, and numerical computations of optimal maintenance policy.

Research limitations/implications

The methodology of the availability estimation when reliability parameters were not tracked by the maintenance organization, and optimization of intermediate-level maintenance, has so far been applied on G-4 jet trainers. Moreover, it can be potentially applied to other aircraft types.

Originality/value

Availability estimation and proposed optimization of intermediate maintenance is based on a survey of data for three years of aircraft fleet maintenance. It enables greater operational readiness (due to a military rationale) with possible cost reduction as a consequence but not as a goal.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 June 2021

Sathish Kumar K., Senthilkumar Chidambaram and Naren Shankar Radha Krishnan

This paper aims to present the jet mixing effectiveness of triangular tabs with semi-circular corrugations to control the subsonic and sonic correctly expanded jets.

Abstract

Purpose

This paper aims to present the jet mixing effectiveness of triangular tabs with semi-circular corrugations to control the subsonic and sonic correctly expanded jets.

Design/methodology/approach

Three semi-circular corrugated triangular tabs (Tab A, Tab B and Tab C) of equal blockage 5.11% are used, in which the corrugation locations on the tabs are varied. The offset distance between the semi-circular corrugations at the leaned edges of the triangular tabs are 0.0, 0.75 and 1.5 mm for the Tabs A, B and C, respectively. Two identical semi-circular corrugated tabs has been placed exactly 180° apart at the exit of the convergent nozzle. The pitot pressure measurements were taken to study the jet mixing characteristics of the tabs for the jet exit Mach numbers of 0.6, 0.8 and 1.0, and it is compared with the free jet.

Findings

The jet centerline pitot pressure decay reveals that, Tab A is very effective than Tab B and Tab C. For the jet exit Mach numbers of 0.6, 0.8 and 1.0, the potential core reduction for the Tab A is found to be 69.1%, 69.7% and 70.8%, respectively, when compared with the free jet.

Practical implications

The semi-circular corrugated triangular tabs were found to be more effective than the plain triangular tabs of equal blockage ratio for reducing the core length with minimum thrust loss.

Originality/value

The offset distance of the semi-circular corrugations are varied along the leaned sides of the triangular tabs, which is the novelty of this study.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 June 2019

Naren Shankar R. and Kevin Bennett S.

Subsonic commercial aircraft operate with turbo-fan engines that operate with moderate bypass ratio (BR) co-flowing jets (CFJ). This study aims to analyse CFJ with constant BR 6.3…

Abstract

Purpose

Subsonic commercial aircraft operate with turbo-fan engines that operate with moderate bypass ratio (BR) co-flowing jets (CFJ). This study aims to analyse CFJ with constant BR 6.3 and varying primary nozzle lip thickness (LT) to find a critical LT in CFJ below which mixing enhances and beyond which mixing inhibits.

Design/methodology/approach

CFJ were characterized with a constant BR of 6.3 and varying lip thicknesses. A single free jet with a diameter equal to that of a primary nozzle of the co-flowing jet was also studied for comparison.

Findings

The results show that within a critical limit, the mixing enhanced with an increase in LT. This was signified by a reduction in potential core length (PCL). Beyond this limit, mixing inhibited leading to the elongation of PCL. This limit was controlled by parameters such as LT and magnitude of BR.

Practical implications

The BR value of CFJ in the present study was 6.3. This lies under the moderate BR value at which subsonic commercial turbofan operates. Hence, it becomes impervious to study its mixing behavior.

Originality/value

This is the first effort to find the critical value of LT for a constant BR for compressible co-flow jets. The CFJ with moderate BR and varying LT has not been studied in the past. The present study focuses on finding a critical LT below which mixing enhances and above which mixing inhibits.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 May 2020

Roy V. Paul, Kriparaj K.G. and Tide P.S.

The purpose of this study is to investigate the aerodynamic characteristics of subsonic jet emanating from corrugated lobed nozzle.

161

Abstract

Purpose

The purpose of this study is to investigate the aerodynamic characteristics of subsonic jet emanating from corrugated lobed nozzle.

Design/methodology/approach

Numerical simulations of subsonic turbulent jets from corrugated lobed nozzles using shear stress transport k-ω turbulence model have been carried out. The analysis was carried out by varying parameters such as lobe length, lobe penetration and lobe count at a Mach number of 0.75. The numerical predictions of axial and radial variation of the mean axial velocity, uu′ ¯ and vv′ ¯ have been compared with experimental results of conventional round and chevron nozzles reported in the literature.

Findings

The centreline velocity at the exit of the corrugated lobed nozzle was found to be lower than the velocity at the outer edges of the nozzle. The predicted potential core length is lesser than the experimental results of the conventional round nozzle and hence the decay in centreline velocity is faster. The centreline velocity increases with the increase in lobe length and becomes more uniform at the exit. The potential core length increases with the increase in lobe count and decreases with the increase in lobe penetration. The turbulent kinetic energy region is narrower with early appearance of a stronger peak for higher lobe penetration. The centreline velocity degrades much faster in the corrugated nozzle than the chevron nozzle and the peak value of Reynolds stress appears in the vicinity of the nozzle exit.

Practical implications

The corrugated lobed nozzles are used for enhancing mixing without the thrust penalty inducing better acoustic benefits.

Originality/value

The prominent features of the corrugated lobed nozzle were obtained from the extensive study of variation of flow characteristics for different lobe parameters after making comparison with round and chevron nozzle, which paved the way to the utilization of these nozzles for various applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 824