Search results

1 – 10 of over 2000
Article
Publication date: 12 September 2016

Nicola Tondini, Andrea Morbioli, Olivier Vassart, Sullivan Lechêne and Jean-Marc Franssen

This paper aims to present the assumptions and the issues that arise when developing an integrated modelling methodology between a computational fluid dynamics (CFD) software…

Abstract

Purpose

This paper aims to present the assumptions and the issues that arise when developing an integrated modelling methodology between a computational fluid dynamics (CFD) software applied to compartment fires and a finite element (FE) software applied to structural systems.

Design/methodology/approach

Particular emphasis is given to the weak coupling approach developed between the CFD code fire dynamics simulator (FDS) and the FE software SAFIR. Then, to show the potential benefits of such a methodology, a multi-storey steel-concrete composite open car park was considered.

Findings

Results show that the FDS–SAFIR coupling allows overcoming shortcomings of simplified models by performing the thermal analysis in the structural elements based on a more advanced modelling of the fire development, whereas it appears that the Hasemi model is more conservative in terms of thermal action.

Originality/value

A typical design approach using the Hasemi model is compared with a more advanced analysis that relies on the proposed FDS–SAFIR coupling.

Details

Journal of Structural Fire Engineering, vol. 7 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 May 2022

Wagdi G. Habashi and Maged Yassin

The purpose of this paper is to advance the multiphysics analysis of helicopter rotors under icing conditions by coupling the iced rotor’s aerodynamics, analyzed by CFD, with the…

131

Abstract

Purpose

The purpose of this paper is to advance the multiphysics analysis of helicopter rotors under icing conditions by coupling the iced rotor’s aerodynamics, analyzed by CFD, with the rotor’s structural characteristics, analyzed by CSD.

Design/methodology/approach

The current work introduces supercomputer-based computational approaches capable of assessing the impact of ice accretion on the aerodynamics, blade dynamics, vibrations and loading of a rotorcraft. The rigid and elastic motions of the blades are accounted for through a loose coupling of the flow solver to a multibody dynamics solver. The coupling framework allows for comprehensive aeroelastic simulations of iced rotors in hover and in forward flight.

Findings

The flow and structural modules were validated on a full helicopter configuration in forward flight using the ROBIN experimental model. The tip structural deflections were in very close agreement with the experimental measurements.

Research limitations/implications

The results of the CFD analyses are limited by the available experimental results they can be compared to. In dry air CFD, three-dimensional (3D) experiments occur first and CFD is then compared to them; in icing, the opposite is true: 3D experiments (if they are ever done, as they are very expensive) chase CFD and sometimes never occur.

Practical implications

This paper presents an outline of how CFD and computational stress dynamics (CSD) analyses can be linked and provides a toolbox for deeper investigation of the complex flows over helicopters operating under difficult in-flight icing conditions.

Social implications

More and more helicopters are designed to be able to operate in hostile environments such as rescuing and saving lives over the oceans or mountains, conditions under which icing encounters cannot be avoided.

Originality/value

A loosely coupled CFD/CSD framework that accounts for the rotor blades structural response to aerodynamic loading and ice accretion in hover and forward flight has been presented. This versatile and cost-effective framework provides a more accurate estimation of the helicopter rotor performance and its degradation due to icing encounters during the early design stages than traditional CFD tools.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 January 2022

Serhat Yilmaz and Gülten Altıokka Yılmaz

The development of robust control algorithms for the position, velocity and trajectory control of unmanned underwater vehicles (UUVs) depends on the accuracy of their mathematical…

Abstract

Purpose

The development of robust control algorithms for the position, velocity and trajectory control of unmanned underwater vehicles (UUVs) depends on the accuracy of their mathematical models. Accuracy of the model is determined by precise estimation of the UUV hydrodynamic parameters. The purpose of this study is to determine the hydrodynamic forces and moments acting on an underwater vehicle with complex body geometry and moving at low speeds and to achieve the accurate coefficients associated with them.

Design/methodology/approach

A three-dimensional (3D) computer-aided design (CAD) model of UUV is designed with one-to-one dimensions. 3D fluid flow simulations are conducted using computational fluid dynamics (CFD) software programme in the solution of Navier Stokes equations for laminar and turbulent flow analysis. The coefficients depending on the hydrodynamic forces and moments are determined by the external flow analysis using the CFD programme. The Flow Simulation k-ε turbulence model is used for the transition from laminar flow to turbulent flow. Hydrodynamic properties such as lift and drag coefficients and roll and yaw moment coefficients are calculated. The parameters are compared with the coefficient values found by experimental methods.

Findings

Although the modular type UUV has a complex body geometry, the comparative results of the experiments and simulations confirm that the defined model parameters are accurate and close to the actual experimental values. In the proposed k-ε method, the percentage error in the estimation of drag and lifting coefficients is decreased to 4.2% and 8.39%, respectively.

Practical implications

The model coefficients determined in this study can be used in high-level control simulations which leads to the development of robust real-time controllers for complex-shaped modular UUVs.

Originality/value

The Lucky Fin UUV with 4 degrees of freedom is a specific design and its CAD model is first extracted. Verification of simulation results by experiments is generally less referenced in studies. However, it provides more precise parameter identification of the model. Proposed study offers a simple and low-cost experimental measurement method for verification of the hydrodynamic parameters. The extracted model and coefficients are worthwhile references for the analysis of modular type UUVs.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 October 2022

Siwen Wang and Qiyou Cheng

Computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling analysis is an important method in the research of helicopter aeroelasticity due to its high…

Abstract

Purpose

Computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling analysis is an important method in the research of helicopter aeroelasticity due to its high precision. However, this method still suffers from some problems, such as wake dissipation and large computational cost. In this study, a new coupling method and a new air load correction method that combine the free wake model with the CFD/CSD method are proposed to maintain computational efficiency whilst solving the wake dissipation problem of the prior coupling methods.

Design/methodology/approach

A new coupling method and a new air load correction method that combine the free wake model with the CFD/CSD method are proposed. With the introduction of the free wake model, the CFD solver can adopt two-order accuracy schemes and fewer aerodynamic grids, thus maintaining computational efficiency whilst solving the wake dissipation problem of the prior coupling methods.

Findings

Compared with the predictions of the prior methods and flight test data, those of the proposed method are more accurate and closer to the test data. The difference between the two methods in high-speed forward flight is minimal.

Research limitations/implications

Because of the chosen research approach, the research results may lack generalisability. Therefore, researchers are encouraged to test the proposed method further.

Originality/value

In this paper, a CFD/CSD/free wake coupling method is proposed to improve the computational accuracy of the traditional CFD/CSD coupled method and ensure the computational efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 March 2020

Hamidreza Khodayari, Fathollah Ommi and Zoheir Saboohi

The purpose of this paper is to review the applications of the chemical reactor network (CRN) approach for modeling the combustion in gas turbine combustors and classify the CRN…

638

Abstract

Purpose

The purpose of this paper is to review the applications of the chemical reactor network (CRN) approach for modeling the combustion in gas turbine combustors and classify the CRN construction methods that have been frequently used by researchers.

Design/methodology/approach

This paper initiates with introducing the CRN approach as a practical tool for precisely predicting the species concentrations in the combustion process with lower computational costs. The structure of the CRN and its elements as the ideal reactors are reviewed in recent studies. Flow field modeling has been identified as the most important input for constructing the CRNs; thus, the flow field modeling methods have been extensively reviewed in previous studies. Network approach, component modeling approach and computational fluid dynamics (CFD), as the main flow field modeling methods, are investigated with a focus on the CRN applications. Then, the CRN construction approaches are reviewed and categorized based on extracting the flow field required data. Finally, the most used kinetics and CRN solvers are reviewed and reported in this paper.

Findings

It is concluded that the CRN approach can be a useful tool in the entire process of combustion chamber design. One-dimensional and quasi-dimensional methods of flow field modeling are used in the construction of the simple CRNs without detailed geometry data. This approach requires fewer requirements and is used in the initial combustor designing process. In recent years, using the CFD approach in the construction of CRNs has been increased. The flow field results of the CFD codes processed to create the homogeneous regions based on construction criteria. Over the past years, several practical algorithms have been proposed to automatically extract reactor networks from CFD results. These algorithms have been developed to identify homogeneous regions with a high resolution based on the splitting criteria.

Originality/value

This paper reviews the various flow modeling methods used in the construction of the CRNs, along with an overview of the studies carried out in this field. Also, the usual approaches for creating a CRN and the most significant achievements in this field are addressed in detail.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 April 2021

Günsu Merin Abbas and Ipek Gursel Dino

Biocontaminants represent higher risks to occupants' health in shared spaces. Natural ventilation is an effective strategy against indoor air biocontamination. However, the…

Abstract

Purpose

Biocontaminants represent higher risks to occupants' health in shared spaces. Natural ventilation is an effective strategy against indoor air biocontamination. However, the relationship between natural ventilation and indoor air contamination requires an in-depth investigation of the behavior of airborne infectious diseases, particularly concerning the contaminant's viral and aerodynamic characteristics. This research investigates the effectiveness of natural ventilation in preventing infection risks for coronavirus disease (COVID-19) through indoor air contamination of a free-running, naturally-ventilated room (where no space conditioning is used) that contains a person having COVID-19 through building-related parameters.

Design/methodology/approach

This research adopts a case study strategy involving a simulation-based approach. A simulation pipeline is implemented through a number of design scenarios for an open office. The simulation pipeline performs integrated contamination analysis, coupling a parametric 3D design environment, computational fluid dynamics (CFD) and energy simulations. The results of the implemented pipeline for COVID-19 are evaluated for building and environment-related parameters. Study metrics are identified as indoor air contamination levels, discharge period and the time of infection.

Findings

According to the simulation results, higher indoor air temperatures help to reduce the infection risk. Free-running spring and fall seasons can pose higher infection risk as compared to summer. Higher opening-to-wall ratios have higher potential to reduce infection risk. Adjacent window configuration has an advantage over opposite window configuration. As a design strategy, increasing opening-to-wall ratio has a higher impact on reducing the infection risk as compared to changing the opening configuration from opposite to adjacent. However, each building setup is a unique case that requires a systematic investigation to reliably understand the complex airflow and contaminant dispersion behavior. Metrics, strategies and actions to minimize indoor contamination risks should be addressed in future building standards. The simulation pipeline developed in this study has the potential to support decision-making during the adaptation of existing buildings to pandemic conditions and the design of new buildings.

Originality/value

The addressed need of investigation is especially crucial for the COVID-19 that is contagious and hazardous in shared indoors due to its aerodynamic behavior, faster transmission rates and high viral replicability. This research contributes to the current literature by presenting the simulation-based results for COVID-19 as investigated through building-related and environment-related parameters against contaminant concentration levels, the discharge period and the time of infection. Accordingly, this research presents results to provide a basis for a broader understanding of the correlation between the built environment and the aerodynamic behavior of COVID-19.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 17 October 2008

R. Aghaei tog, A.M. Tousi and A. Tourani

The purpose of this paper is to show the superior turbulence method in CFD analysis of radial turbo machines and to introduce the best way to choose turbulence parameters whenever…

2511

Abstract

Purpose

The purpose of this paper is to show the superior turbulence method in CFD analysis of radial turbo machines and to introduce the best way to choose turbulence parameters whenever FLUENT user applies this software as a complementary design tool for high‐speed turbo machinery components.

Design/methodology/approach

One of the most important issues in CFD is analysis of flow field in turbo machines. Flow in high‐speed radial turbo machinery is a 3D, turbulent and unsteady behavior so needs suitable method for converging. It is clear that the turbulence model has an extraordinary effect on investigation of 3D flows in high‐speed turbo machinery. A centrifugal compressor of micro and radial turbines have been designed and simulated 3D using the commercial CFD‐code FLUENT 6. Three turbulence models kε/standard, renormalization‐group (RNG) and RSM were considered and results of three models were compared with experimental and 1D design results.

Findings

The study showed numerical results are compatible with experimental performance data. It determined that RNG method in CFD analysis of radial turbo machines has provided better results than the standard kε method. In addition, when using the RNG method, the phenomena of flow field were more visible than other methods.

Originality/value

This paper offers use of the RNG method as a superior turbulence method in CFD analysis of radial turbo machines.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 5 April 2019

Corrado Groth, Ubaldo Cella, Emiliano Costa and Marco Evangelos Biancolini

This paper aims to present a fast and effective approach to tackle complex fluid structure interaction problems that are relevant for the aeronautical design.

Abstract

Purpose

This paper aims to present a fast and effective approach to tackle complex fluid structure interaction problems that are relevant for the aeronautical design.

Design/methodology/approach

High fidelity computer-aided engineering models (computational fluid dynamics [CFD] and computational structural mechanics) are coupled by embedding modal shapes into the CFD solver using RBF mesh morphing.

Findings

The theoretical framework is first explained and its use is then demonstrated with a review of applications including both steady and unsteady cases. Different flow and structural solvers are considered to showcase the portability of the concept.

Practical implications

The method is flexible and can be used for the simulation of complex scenarios, including components vibrations induced by external devices, as in the case of flapping wings.

Originality/value

The computation mesh of the CFD model becomes parametric with respect to the modal shape and, so, capable to self-adapt to the loads exerted by the surrounding fluid both for steady and transient numerical studies.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 May 2023

Ricardo Sbragio and Marcelo Ramos Martins

The purpose of this work is to present a procedure for determining the wind drift factor through two-dimensional computational fluid dynamics (CFD) simulations of the wind acting…

Abstract

Purpose

The purpose of this work is to present a procedure for determining the wind drift factor through two-dimensional computational fluid dynamics (CFD) simulations of the wind acting on a wavy sea surface, such that the subjectivity of its estimation is reduced.

Design/methodology/approach

The wind drift factor was determined by two-dimensional CFD analyses with open-channel condition. The characteristic wave was determined by the Sverdrup–Munk–Bretschneider (SMB) method. The uncertainty analysis is based on convergence studies using a single parameter refinement (grid and time step).

Findings

This procedure allows the estimation of the wind drift factor in a fetch-limited domain. The domain's value in the analyzed region is 0.0519 ± 4.92% which is consistent with the upper values of the wind drift factors reported in the literature.

Research limitations/implications

The use of a three-dimensional domain was impractical with the available computational resources because of the fine mesh required for wave modeling. The uncertainty analysis consisted only of a verification procedure. Validation against real data was not possible because of the lack of measured data in the analyzed region.

Originality/value

The wind drift factor is usually estimated based on either experience or random sampling. The original contribution of this work is the presentation of a CFD procedure for estimating the wind drift factor, in which the domain inlet is subjected to a wave boundary condition and to a wind velocity.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 May 2020

Qi Jie Kwong, Jim Yexin Yang, Oliver Hoon Leh Ling, Rodger Edwards and Jamalunlaili Abdullah

The purpose of this paper is to analyse the thermal environment of two engineering testing centres cooled via different means using computational fluid dynamics (CFD), focussing…

Abstract

Purpose

The purpose of this paper is to analyse the thermal environment of two engineering testing centres cooled via different means using computational fluid dynamics (CFD), focussing on the indoor temperature and air movement. This computational technique has been used in the analysis of thermal environment in buildings where the profiles of thermal comfort parameters, such as air temperature and velocity, are studied.

Design/methodology/approach

A pilot survey was conducted at two engineering testing centres – a passively cooled workshop and an air-conditioned laboratory. Electronic sensors were used in addition to building design documentation to collect the required information for the CFD model–based prediction of air temperature and velocity distribution patterns for the laboratory and workshop. In the models, both laboratory and workshop were presumed to be fully occupied. The predictions were then compared to empirical data that were obtained from field measurements. Operative temperature and predicted mean vote (PMV)–predicted percentage dissatisfied (PPD) indices were calculated in each case in order to predict thermal comfort levels.

Findings

The simulated results indicated that the mean air temperatures of 21.5°C and 32.4°C in the laboratory and workshop, respectively, were in excess of the recommended thermal comfort ranges specified in MS1525, a local energy efficiency guideline for non-residential buildings. However, air velocities above 0.3 m/s were predicted in the two testing facilities, which would be acceptable to most occupants. Based on the calculated PMV derived from the CFD predictions, the thermal sensation of users of the air-conditioned laboratory was predicted as −1.7 where a “slightly cool” thermal experience would prevail, but machinery operators in the workshop would find their thermal environment too warm with an overall sensation score of 2.4. A comparison of the simulated and empirical results showed that the air temperatures were in good agreement with a percentage of difference below 2%. However, the level of correlation was not replicated for the air velocity results, owing to uncertainties in the selected boundary conditions, which was due to limitations in the measuring instrumentation used.

Research limitations/implications

Due to the varying designs, the simulated results of this study are only applicable to laboratory and workshop facilities located in the tropics.

Practical implications

The results of this study will enable building services and air-conditioning engineers, especially those who are in charge of the air-conditioning and mechanical ventilation (ACMV) system design and maintenance to have a better understanding of the thermal environment and comfort conditions in the testing facilities, leading to a more effective technical and managerial planning for an optimised thermal comfort management. The method of this work can be extended to the development of CFD models for other testing facilities in educational institutions.

Social implications

The findings of this work are particularly useful for both industry and academia as the indoor environment of real engineering testing facilities were simulated and analysed. Students and staff in the higher educational institutions would benefit from the improved thermal comfort conditions in these facilities.

Originality/value

For the time being, CFD studies have been carried out to evaluate thermal comfort conditions in various building spaces. However, the information of thermal comfort in the engineering testing centres, of particular those in the hot–humid region are scantily available. The outcomes of this simulation work showed the usefulness of CFD in assisting the management of such facilities not only in the design of efficient ACMV systems but also in enhancing indoor thermal comfort.

Details

Smart and Sustainable Built Environment, vol. 10 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of over 2000