Search results

1 – 10 of 175
Open Access
Article
Publication date: 22 September 2022

Marcin Figat

This paper presents first sight on the longitudinal control strategy for an aircraft in the tandem wing configuration. It is an aerodynamic strongly coupled configuration that…

1514

Abstract

Purpose

This paper presents first sight on the longitudinal control strategy for an aircraft in the tandem wing configuration. It is an aerodynamic strongly coupled configuration that needs a lot of detailed aerodynamic analysis which describes the mutual impact of the main parts of the aircraft. The purpose of this paper is to build the numerical model that allows to make an analysis of necessary flaps (front and rear) deflection and prepare the control strategy for this kind of aircraft.

Design/methodology/approach

Aircrafts’ aerodynamic characteristics were obtained using the MGAERO software which is a commercial computing fluid dynamics tool created by Analytical Methods, Inc. This software uses the Euler flow model. Results from this software were used in the static stability evaluation and trim condition analysis. The trim conditions are the outcome of the optimisation process whose goal was to find the best front and rear flap deflection to achieve the best lift to drag (L/D) ratio.

Findings

The main outcome of this investigation is the proposal of strategy for the front and rear flap deflection which ensured the maximum L/D ratio and satisfied the trim condition. Moreover, the analysis of the mutual impact of the front and rear wings and the analysis of the control surface impact on the aerodynamic characteristic of the aircraft are presented.

Research limitations/implications

In terms of aerodynamic computation, MGAERO software uses an inviscid flow model. However, this research is for the conceptual stage of the design and the MGAERO software grantee satisfied accurate respect to relatively low time of computations.

Practical implications

The ultimate goal is to build an aircraft in a tandem wing configuration and to conduct flying tests or wind tunnel tests. The presented result is one of the milestones to achieve this goal.

Originality/value

The aircraft in the tandem wing configuration is an aerodynamic-coupled configuration that needs detailed analysis to find the mutual interaction between the front and rear wings. Moreover, the mutual impact of the front and rear flaps is necessary too. Obtaining these results allowed this study to build the numerical model of the aircraft in the tandem wing configuration. It allows to find the best strategy of flap deflection, which allows to obtain the maximum L/D ratio and satisfy the trim condition.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 1 June 2023

Marcin Figat and Agnieszka Kwiek

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced…

1611

Abstract

Purpose

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced drag. The purpose of this paper is to determine whether a certain trend in the wingspan impact on aircraft dynamic stability can be identified. The secondary goal was to compare the response to control of flaps placed on a front and rear wing.

Design/methodology/approach

The aerodynamic data and control derivatives were obtained from the computational fluid dynamics computations performed by the MGAERO software. The equations of aircraft longitudinal motion in a state space form were used. The equations were built based on the aerodynamic coefficients, stability and control derivatives. The analysis of the dynamic stability was done in the MATLAB by solving the eigenvalue problem. The response to control was computed by the step response method using MATLAB.

Findings

The results of this study showed that because of a strong aerodynamic coupling, a nonlinear relation between the wing size and aircraft dynamic stability proprieties was observed. In the case of the flap deflection, stronger oscillation was observed for the front flap.

Originality/value

Results of dynamic stability of aircraft in the tandem wing configuration can be found in the literature, but those studies show outcomes of a single configuration, while this paper presents a comprehensive investigation into the impact of wingspan on aircraft dynamic stability. The results reveal that because of a strong aerodynamic coupling, the relation between the span factor and dynamic stability is nonlinear. Also, it has been demonstrated that the configuration of two wings with the same span is not the optimal one from the aerodynamic point of view.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 October 2018

Marcin Figat

This paper aims to present the results of aerodynamic calculation of the aircraft in tandem wing configuration called VTOL. A presented vehicle combines the capabilities of the…

Abstract

Purpose

This paper aims to present the results of aerodynamic calculation of the aircraft in tandem wing configuration called VTOL. A presented vehicle combines the capabilities of the classic aircraft and helicopters. The aircraft is equipped with two pairs of tilt-rotors mounted on the tips of the front and the rear wing. The main goal of the presented research was to find the aerodynamic impact of both pairs of tilt-rotors on aerodynamic coefficients of the aircraft. Moreover, the rotors impact on the static stability of the aircraft was investigated too.

Design/methodology/approach

The CFD analysis was made for the complete aircraft in the tandem wing configuration. The computation was performed for the model of aircraft which was equipped with the four sub-models of the front and rear rotors. They were modeled as the actuator discs. This method allows for computing the aerodynamic impact of rotating components on the aircraft body. All aerodynamic analysis was made by the MGAERO software. The numerical code of the software was based on the Euler flow model. The used numerical method allows for the quick computation of very complex model of aircraft with a satisfied accuracy.

Findings

The result obtained by computation includes the aerodynamic coefficients which described the impact of the tilt rotors on the aircraft aerodynamic. The influence of the angle of attack, sideslip angle and the change of rotor tilt angle was investigated. Evaluation of the influence was made by the stability margin analysis and the selected stability derivatives computation.

Practical implications

Presented results could be very useful in the computation of dynamic stability of unconventional aircraft. Moreover, results could be helpful during designing the aircraft in the tandem wing configuration.

Originality/value

This paper presents the aerodynamic analysis of the unconventional configuration of the aircraft which combines the tandem wing feature with the tilt-rotor advantages. The impact of disturbance generated by the front and rear rotors on the flow around the aircraft was investigated. Moreover, the impact of rotors configuration on the aircraft static stability was found too.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 August 2022

Ivan Kostić, Dragoljub Tanović, Olivera Kostić, Ahmed Ali Irhayim Abubaker and Aleksandar Simonović

Unmanned aerial vehicles (UAV) with remote and/or automated flight and mission controls have replaced airplanes with pilots in many important roles. This study aims to deal with…

Abstract

Purpose

Unmanned aerial vehicles (UAV) with remote and/or automated flight and mission controls have replaced airplanes with pilots in many important roles. This study aims to deal with computational fluid dynamics (CFD) analysis and development of the aerodynamic configuration of a multi-purpose UAV for low and medium altitudes. The main aerodynamic requirement was the application of the tandem wing (TW) concept, where both wings generate a positive lift and act as primary lifting devices.

Design/methodology/approach

Initial design analyses of the UAV’s aerodynamic configuration were performed using ANSYS Fluent. In previous work in Fluent, the authors established a calculation model that has been verified by experiments and, with minor adjustments, could be applied for subsonic, transonic and supersonic flow analyses.

Findings

The design evolved through eight development configurations, where the latest V8 satisfied all the posted longitudinal aerodynamic requirements. Both wings generate a substantial amount of positive lift, whereas the initial stall occurs first on the front wing, generating a natural nose-down stall recovery tendency. In the cruising flight regime, this configuration has the desired range of longitudinal static stability and its centre of pressure is in close proximity to the centre of gravity.

Practical implications

The intermediate development version V8 with proper longitudinal aerodynamic characteristics presents a good starting point for future development steps that will involve the optimization of lateral-directional aerodynamics.

Originality/value

Using contemporary CFD tools, a novel and original TW aerodynamic configuration have evolved within eight development stages, not being based on or derived from any existing designs.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 September 2019

Joaquin Ortega-Casanova and Ramon Fernandez-Feria

This paper aims to consider the thrust force generated by two plunging and pitching plates in a tandem configuration in forward flight to find out the configuration that maximizes…

Abstract

Purpose

This paper aims to consider the thrust force generated by two plunging and pitching plates in a tandem configuration in forward flight to find out the configuration that maximizes the propulsive efficiency with high-enough time-averaged lift force.

Design/methodology/approach

To that end, the Navier–Stokes equations for the incompressible and two-dimensional flow at Reynolds number $500 are solved. As the number of parameters is quite large, the case of constant separation between the plates (half their chord length), varying seven non-dimensional parameters related to the phase shift between the heaving motion of the foils, the phase lag between pitch and heave of each plate independently and the frequency and amplitude of the heaving and pitching motions are considered. This analysis complements some other recent studies where the separation between the foils has been used as one of the main control parameters.

Findings

It is found that the propulsive efficiency is maximized for a phase shift of 180° (counterstroking), when the reduced frequency is 2.2 and the Strouhal number based on half the plunging amplitude is 0.17, the pitching amplitude is 25° and when pitch leads heave by 135° in both the fore -plate and the hind plate. The propulsive efficiency is about 20 per cent, just a bit larger than that of an isolate plate with the same motion as the fore-plate, but the corresponding lift force is negligible for a single plate. The paper discusses this vortical flow structure in relation to other less efficient ones. Finally, the effect of the separation between the plates and the Reynolds number is also briefly discussed.

Originality/value

The kinematics of two flapping plates in tandem configuration that maximizes the propulsive efficiency are characterized discussing physically the associated vortical flow structures in comparison with less efficient kinematic configurations. A much larger number of parameters in the optimization procedure than in previous related works is considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 July 2021

João Antônio Dantas de Jesus Ferreira and Ney Rafael Secco

This paper aims to investigate the possibility of lowering the time taken during the aircraft design for unmanned aerial vehicles by using machine learning (ML) for the…

Abstract

Purpose

This paper aims to investigate the possibility of lowering the time taken during the aircraft design for unmanned aerial vehicles by using machine learning (ML) for the configuration selection phase. In this work, a database of unmanned aircraft is compiled and is proposed that decision tree classifiers (DTC) can understand the relations between mission and operational requirements and the resulting aircraft configuration.

Design/methodology/approach

This paper presents a ML-based approach to configuration selection of unmanned aircraft. Multiple DTC are built to predict the overall configuration. The classifiers are trained with a database of 118 unmanned aircraft with 57 characteristics, 47 of which are inputs for the classification problem, and 10 are the desired outputs, such as wing configuration or engine type.

Findings

This paper shows that DTC can be used for the configuration selection of unmanned aircraft with reasonable accuracy, understanding the connections between the different mission requirements and the culminating configuration. The framework is also capable of dealing with incomplete databases, maximizing the available knowledge.

Originality/value

This paper increases the computational usage for the aircraft design while retaining requirements’ traceability and increasing decision awareness.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 May 2022

Chengshan Li and Huachao Dong

Variable-fidelity optimization (VFO) frameworks generally aim at taking full advantage of high-fidelity (HF) and low-fidelity (LF) models to solve computationally expensive…

Abstract

Purpose

Variable-fidelity optimization (VFO) frameworks generally aim at taking full advantage of high-fidelity (HF) and low-fidelity (LF) models to solve computationally expensive problems. The purpose of this paper is to develop a novel modified trust-region assisted variable-fidelity optimization (MTR-VFO) framework that can improve the optimization efficiency for computationally expensive engineering design problems.

Design/methodology/approach

Though the LF model is rough and inaccurate, it probably contains the gradient information and trend of the computationally expensive HF model. In the proposed framework, the extreme locations of the LF kriging model are firstly utilized to enhance the HF kriging model, and then a modified trust-region (MTR) method is presented for efficient local search. The proposed MTR-VFO framework is verified through comparison with three typical methods on some benchmark problems, and it is also applied to optimize the configuration of underwater tandem wings.

Findings

The results indicate that the proposed MTR-VFO framework is more effective than some existing typical methods and it has the potential of solving computationally expensive problems more efficiently.

Originality/value

The extreme locations of LF models are utilized to improve the accuracy of HF models and a MTR method is first proposed for local search without utilizing HF gradient. Besides, a novel MTR-VFO framework is presented which is verified to be more effective than some existing typical methods and shows great potential of solving computationally expensive problems effectively.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 April 2021

Agnieszka Kwiek, Cezary Galinski, Krzysztof Bogdański, Jaroslaw Hajduk and Andrzej Tarnowski

According to the study of the space flight market, there is a demand for space suborbital flights including commercial tourist flights. However, one of the challenges is to design…

Abstract

Purpose

According to the study of the space flight market, there is a demand for space suborbital flights including commercial tourist flights. However, one of the challenges is to design a mission and a vehicle that could offer flights with relatively low G-loads. The project of the rocket-plane in a strake-wing configuration was undertaken to check if such a design could meet the FAA recommendation for this kind of flight. The project concept assumes that the rocket plane is released from a slowly flying carrier plane, then climbs above 100 kilometers above sea level and returns in a glide flight using a vortex lift generated by the strake-wing configuration. Such a mission has to include a flight transition during the release and return phases which might not be comfortable for passengers. Verification if FAA recommendation is fulfilled during these transition maneuvers was the purpose of this study.

Design/methodology/approach

The project was focused on the numerical investigation of a possibility to perform transition maneuvers mentioned above in a passenger-friendly way. The numerical simulations of a full-scale rocket-plane were performed using the simulation and dynamic stability analyzer (SDSA) software package. The influence of an elevator deflection change on flight parameters was investigated in two cases: a transition from the steep descent at high angles of attack to the level glide just after rocket-plane release from the carrier and an analogous transition after re-entry to the atmosphere. In particular, G-loads and G-rates were analyzed.

Findings

As a result, it was found that the values of these parameters satisfied the specific requirements during the separation and transition from a steep descent to gliding. They would be acceptable for an average passenger.

Research limitations/implications

To verify the modeling approach, a flight test campaign was performed. During the experiment, a rocket-plane scaled model was released from the RC model helicopter. The rocket-plane model was geometrically similar only. Froude scales were not applied because they would cause excessive technical complications. Therefore, a separate simulation of the experiment with the application of the scaled model was performed in the SDSA software package. Results of this simulation appeared to be comparable to flight test results so it can be concluded that results for the full-scale rocket-plane simulation are also realistic.

Practical implications

It was proven that the rocket-plane in a strake-wing configuration could meet the FAA recommendation concerning G-loads and G rates during suborbital flight. Moreover, it was proven that the SDSA software package could be applied successfully to simulate flight characteristics of airplanes flying at angles of attack not only lower than stall angles but also greater than stall angles.

Social implications

The application of rocket-planes in a strake-wing configuration could make suborbital tourist flights more popular, thus facilitating the development of manned space flights and contributing to their cost reduction. That is why it was so important to prove that they could meet the FAA recommendation for this kind of service.

Originality/value

The original design of the rocket plane was analyzed. It is equipped with an optimized strake wing and is controlled with oblique, all moving, wingtip plates. Its post-stall flight characteristics were simulated with the application of the SDSA software package which was previously validated only for angles of attack smaller than stall angle. Therefore, experimental validation was necessary. However, because of excessive technical problems caused by the application of Froude scales it was not possible to perform a conventional test with a dynamically scaled model. Therefore, the geometrically scaled model was built and flight tested. Then a separate simulation of the experiment with the application of this model was performed. Results of this separate simulation were compared with the results of the flight test. This comparison allowed to draw the conclusion on the applicability of the SDSA software for post-stall analyzes and, indirectly, on the applicability of the proposed rocket-plane for tourist suborbital flights. This approach to the experimental verification of numerical simulations is quite unique. Finally, a quite original method of the model launching during flight test experiment was applied.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 April 2014

Zdobyslaw Goraj

The present study aimed to demonstrate different computational models, data and stability results obtained in a wide number of projects of various aircrafts such as unmanned…

Abstract

Purpose

The present study aimed to demonstrate different computational models, data and stability results obtained in a wide number of projects of various aircrafts such as unmanned aerial vehicles (UAVs), general aviation and big passenger flying airliners in blended wing body (BWB) configurations. Many details of modeling and computing are shown for unconventional configurations, namely, for a BWB aircraft and for tailless UAVs.

Design/methodology/approach

Mathematical models for analysis of static and dynamic stability were built and investigated based on equations of motion in the linearized form using the so-called state variable model for a steady-state disturbed, generally asymmetric, flight.

Findings

Flight dynamics models and associated computational procedures appeared to be useful, both in a preliminary design phase and during the final assessment of the configuration at flight tests. It was also found that the difference between thresholds for static and dynamic stability conditions was equal to 9 per cent of mean aerodynamic chord (MAC) in the case of BWB and 3 per cent of MAC in the case of tailless UAVs.

Practical implications

Many useful information about aircraft dynamics can be easily obtained from computational analyses including time to half/double and periods of oscillation, undamped frequencies, damping ratio and many others. Stability analysis of different unconventional configurations will be easier and faster if an access to such configurations is available.

Originality/value

This paper presents a very efficient method of assessment of the designing parameters, especially in an early stage of the design process. In open literature, there are a great number of datasets for classical configurations, but it is hard to find anything for passenger BWB and tailless UAVs. Stability computations are performed based on equations of motion derived in the stability frame of the reference fixed with one-quarter of MAC. It can be considered as an original, not typical but a very practical approach because values of stability and control derivatives do not change even if the centre of gravity is travelling.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 4 September 2017

Ewa Cichocka

The paper focuses on the evaluation of a light aircraft spin. The main purpose of this paper is to achieve reliable mathematical models of aircraft motion beyond stall conditions…

Abstract

Purpose

The paper focuses on the evaluation of a light aircraft spin. The main purpose of this paper is to achieve reliable mathematical models of aircraft motion beyond stall conditions to subsequently predict spin properties based on calculation only. Another vitally significant objective is to verify whether the aerodynamic characteristics determined numerically are coherent with the wind tunnel measurements performed on the dynamically scaled aircraft models.

Design/methodology/approach

The analysis was carried out for two certified conventional light aircraft. The first part of the investigation is devoted to the verification of the simplified methods used to identify the aircraft recoverability from spinning steady-state turns and estimate the primary post-stall flight parameters. Then, the spin simulations were executed. The computational results were thereafter compared with the in-flight data recordings.

Findings

The study confirms the coincidence between the calculated spinning behaviour and the observed aircraft response during the flight tests. The mathematical models of aircraft spatial motion have been found to be credible for predicting spin properties. The simplified methods are reliable to determine the basic spin performance of light aircraft at the preliminary design stage, whereas the spin simulations enable recognition and comprehensive examination of all spin modes.

Practical implications

The outcomes of conducted calculation and comparisons of computational spin properties with flight test recordings have indicated that the qualitative assessment of spinning motion is enabled at each stage of the designing process.

Originality/value

The paper involves the comparison of the computational results with the recordings of spin in-flight tests and the correlation between calculated and experimentally obtained aerodynamics of light aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 175