Search results

1 – 10 of over 9000
Article
Publication date: 3 April 2018

Faicel Hammami, Nader Ben-Cheikh, Brahim Ben-Beya and Basma Souayeh

This paper aims to analyze the effect of aspect ratio A and aspect velocity ratio a on the bifurcation occurrence phenomena in lid-driven cavity by using finite volume method…

Abstract

Purpose

This paper aims to analyze the effect of aspect ratio A and aspect velocity ratio a on the bifurcation occurrence phenomena in lid-driven cavity by using finite volume method (FVM) and multigrid acceleration. This study has been performed for certain pertinent parameters; a wide range of the Reynolds number values has been adopted, and aspect ratios ranging from 0.25 to 1 and various velocity ratios from 0.25 to 0.825 have been considered in this investigation. Results show that the transition to the unsteady regime follows the classical scheme of Hopf bifurcation, giving rise to a perfectly periodic state. Flow periodicity has been verified through time history plots for the velocity component and phase-space trajectories as a function of Reynolds number. Velocity profile for special case of a square cavity (A = 1) was found to be in good agreement between current numerical results and published ones. Flow characteristics inside the cavity have been presented and discussed in terms of streamlines and vorticity contours at a fixed Reynolds number (Re = 5,000) for various aspect ratios (a = 0).

Design/methodology/approach

The numerical method is based on the FVM and multigrid acceleration.

Findings

Computations have been investigated for several Reynolds numbers and aspect ratios A (0.25, 0.5, 0.75, 0.825 and 1). Besides, various velocity ratios (a = 0.25, 0.5, 0.75 and 0.825) at fixed aspect ratios (A = 0.25, 0.5 and 0.75) were considered. It is observed that the transition to the unsteady regime follows the classical scheme of Hopf bifurcation, giving rise to a perfectly periodic state. Flow periodicity is verified through time history plots for velocity components and phase-space trajectories.

Originality/value

The bifurcations between steady and unsteady states are investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 May 2010

K. Rama Narasimha, S.N. Sridhara, M.S. Rajagopal and K.N. Seetharamu

The purpose of this paper is to present a numerical investigation on pulsating heat pipe (PHP) to study the slug velocities as a function of various parameters.

Abstract

Purpose

The purpose of this paper is to present a numerical investigation on pulsating heat pipe (PHP) to study the slug velocities as a function of various parameters.

Design/methodology/approach

The governing equation of PHP is solved using explicit embedded Runge‐Kutta method, the Dormand–Prince pair in conjunction with MATLAB with the nomenclature 45 for the determination of displacement and the velocity of the slug.

Findings

The results show that lower fill ratio, higher diameter, higher operating temperature and higher temperature difference between evaporator and condenser for a given working fluid results in higher slug velocities, indicating higher momentum transfer and hence better heat transport.

Research limitations/implications

Under steady state conditions, the design of a PHP is facilitated through the introduction of non‐dimensional numbers.

Originality/value

The displacement and slug velocities for additional working fluids, namely ethanol and methanol, are determined for the first time. The behaviour of non‐dimensional numbers, i.e. Poiseuille number, capillary number and Eckert number in a PHP as a function of various parameters have been studied for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 April 2016

Zhongliang Xie, Zhu-shi Rao, Na Ta and Ling Liu

As the companion paper of Part I, this paper aims to get more insight into the essence of lambda and to reveal its nature and role in the transition of lubrication states. Mixed…

Abstract

Purpose

As the companion paper of Part I, this paper aims to get more insight into the essence of lambda and to reveal its nature and role in the transition of lubrication states. Mixed lubrication (ML) model with micro-asperities contacts has been discussed in details in Part I.

Design/methodology/approach

Mimetic algorithm is used to get numerical solutions. Relationships between film thickness ratios and lubrication states transition with different external loads, rotating speeds, radial clearances, elastic modulus, surface hardness and roughness parameters are obtained.

Findings

The characteristic parameters of transitions from boundary lubrication (BL) to ML and ML to hydrodynamic lubrication (HL) are studied to determine how these parameters change with above factors. Finally, the essence and major influencing factors of lambda are summarized for such bearings.

Originality/value

In Part II, the authors believe that the paper presents for the first time: further insight into the essence of the lambda ratio, and its role in the lubrication states transition are given; the determinations of the characteristic parameters of transition from BL to ML and ML to HL are investigated for the first time; the characteristic parameters of transitions from BL to ML and ML to HL are also studied to determine how parameters (external load, rotating speed, radial clearance, elastic modulus, surface hardness and roughness parameter) change with above factors; a summary of the essence and major influencing factors of lambda for such bearings is given.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 January 2007

Jianzhong Lin, Shanliang Zhang and James A. Olson

This paper seeks to explore the fiber orientation distribution and rheological properties of turbulent fiber suspensions flowing through a contraction.

Abstract

Purpose

This paper seeks to explore the fiber orientation distribution and rheological properties of turbulent fiber suspensions flowing through a contraction.

Design/methodology/approach

The Reynolds averaged Navier‐Stokes equation was solved with the Reynolds stress model to get the mean fluid velocity and the turbulent kinetic energy in the turbulent flow of a contraction with rectangular cross‐section. The turbulent velocity fluctuations were represented as a Fourier series with random coefficients. Then the slender‐body theory was used to predict the fiber orientation distribution, orientation tensor, additional shear stress and first normal stress difference of suspensions in the flow.

Findings

It is found that the longer fibers tend to align the streamline easily. Increased contraction ratio results in higher fiber alignment in the direction of flow. The fibers are weakly and strongly aligned in the direction of flow in the region near the inlet and the exit, respectively. Fibers are significantly more aligned in the plane of the contraction than in the xz plane. Contraction ratio and fiber length were shown to strongly and weakly affect the distributions of additional shear stress and first normal stress difference.

Originality/value

It is the first time that the fiber orientation distribution and rheological properties of turbulent fiber suspensions flowing through a contraction have been computed numerically. The computational approach and results are valuable to the design and operation of contraction used in the industrial processes.

Details

Engineering Computations, vol. 24 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 June 2019

Yuanlong Chen, Tingbo Hou and Xiaochao Zhou

The purpose of this paper is to ensure adequate thermal management to remove and dissipate the heat produced by a light-emitting diode (LED) and to guarantee reliable and safe…

Abstract

Purpose

The purpose of this paper is to ensure adequate thermal management to remove and dissipate the heat produced by a light-emitting diode (LED) and to guarantee reliable and safe operation.

Design/methodology/approach

A three-dimensional (3-D) computational fluid dynamics (CFD) model was used to analyze the distribution of fluid velocities among microchannels at four different aspect ratios.

Findings

The results showed that at the same inlet flow rate, the larger the aspect ratio of the microchannels, the better the uniformity of the internal fluid velocity and thus better the heat dissipation performance on the surface of the high-power LED chip. In addition, the thermal performance of a high-power LED water cooling system with four different aspect ratios’ microchannel structures is further studied experimentally. Specifically, the coupling effect between the fluid velocity distribution in the microchannels and the heat dissipation performance of a high-power LED water cooling system is qualitatively analyzed and compared with the simulation results of the fluid velocity distribution. The results fully demonstrated that a larger aspect ratio of the microchannels results in better heat dissipation performance on the surface of the high-power LED chip.

Originality/value

Optimizing the structural parameters to facilitate a relatively uniform velocity distribution to improve the water cooling system performance may be a key factor to be considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2023

Mano S. and Nadaraja Pillai S.

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently…

Abstract

Purpose

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently modified to improve the power production through placing number of wind turbines and locations.

Design/methodology/approach

A series of wind tunnel experiments were carried out to evaluate the downstream wake characteristics of the S809 airfoil attached with various EFP (EFP, A = 0.1C, 0.2C and 0.3C) at various angles of attack corresponding to free stream velocity Reynolds number (Re) = 2.11 × 105 and various turbulence intensity (TI = 5%, 7%, 10% and 12%).

Findings

For the S809 wind turbine blade attached with EFP, the downstream velocity ratio decreases with increasing in angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%. The wake intensity for the S809 wind turbine blade and S809 airfoil with 10% of chord EFP performs the same for each downstream location.

Practical implications

Placing the wind turbine in the wind park next to another wind turbine poses a potential challenge for the park power performance. This research addresses the characteristics of the downstream turbulence intensity profile modified with the EFP in the wind turbine blade which improves the downstream characteristics of the turbine in the wind park.

Originality/value

The downstream velocity ratio decreases with increasing angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 April 2015

Istvan Keppler, Zoltan Hudoba, Istvan Oldal, Attila Csatar and Laszlo Fenyvesi

– The analysis of the effect of tool vibrations on the measured and simulated draught forces of cultivator tools. This paper aims to discuss this issue.

459

Abstract

Purpose

The analysis of the effect of tool vibrations on the measured and simulated draught forces of cultivator tools. This paper aims to discuss this issue.

Design/methodology/approach

Soil bin measurements and discrete element method (DEM)-based simulations.

Findings

The soil-tool interaction induced free vibrations of cultivator tools have significant impact on the measured draught force, and the simulations made by using vibrating tools give similar results.

Research limitations/implications

Accurate calibration of discrete element model parameters can be done based on the reproduction of the whole Mohr-Coulomb failure line. Draught force ratiovelocity ratio values seem to be independent of tool geometry and soil conditions in case of velocity ratio higher than 2.

Practical implications

DEM-based numerical simulations can be used for modeling the effect of tool vibration on the draught force values. During discrete element simulations of soil-tool interaction, the effect of tool vibration may not be neglected.

Originality/value

The paper demonstrates that during the discrete element modelling of the soil-tool interaction, the tool vibration phenomenon should not be neglected.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 October 2018

Prabhugouda Mallanagouda Patil, Geeta Hadimani, Shashikant A., P.S. Kulkarni and Mukesh Kumar

This paper aims to provide a detailed study on the influence of slip flow and thermal jump over mixed convection flow along an exponentially stretching surface. Also, impacts of…

Abstract

Purpose

This paper aims to provide a detailed study on the influence of slip flow and thermal jump over mixed convection flow along an exponentially stretching surface. Also, impacts of suction/blowing, volumetric heat source/sink and velocity ratio parameter will be studied in this analysis.

Design/methodology/approach

The modeled governing equations for the assumed problem are dimensional nonlinear partial differential equations in nature. To reduce these equations, non-similar transformations are used to get the dimensionless nonlinear partial differential equations. Then, quasi-linearization technique is used to linearize these non-dimensional nonlinear partial differential equations. Finally, an implicit finite difference scheme is used to discretize the resulting equations.

Findings

The physical explanations are provided for the variations of various non-dimensional governing parameters over the velocity and temperature profiles. Also, the effects of these dimensionless parameters on skin friction coefficient and heat transfer rate are scrutinized in a manner which highlights their physical interpretation. The detailed discussion exhibits the fact that the streamwise co-ordinate velocity ratio parameter, partial slip parameter and the thermal jump parameter have significant influence over the flow and thermal fields.

Originality/value

This work has not been reported in the literature to the authors’ best of knowledge.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1932

General G.A. Crocco

Having taken up our position on the above definition of this fundamental point, which closes the long‐standing discussion between upholders of the airscrew and those of the…

Abstract

Having taken up our position on the above definition of this fundamental point, which closes the long‐standing discussion between upholders of the airscrew and those of the reaction system (just as in earlier days the distinction between impulse and work closed the classic discussion between the followers of Leibnitz and Descartes), we must now admit, without going into details, that this supposed attainment of equal efficiencies cannot be considered easy, if even possible, for the normal speeds of flight. It must also be admitted that a power unit, consisting of engine, compressor and jet, is at first sight a unit more complex, heavier and more bulky than the ordinary engine‐airscrew unit which has now been reduced to a high degree of simplicity and neatness. There is no doubt at all that in the sphere of the sub‐acoustic velocities the airscrew will reign supreme.

Details

Aircraft Engineering and Aerospace Technology, vol. 4 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 17 December 2019

Samaneh Karami, Ataallah Soltani Goharrizi, Bahador Abolpour and Samira Darijani

The purpose of this paper is to present a computational fluid dynamic simulation for the investigation of the particles segregation phenomenon in the gas–solid fluidized beds.

110

Abstract

Purpose

The purpose of this paper is to present a computational fluid dynamic simulation for the investigation of the particles segregation phenomenon in the gas–solid fluidized beds.

Design/methodology/approach

These particles have the same size and different densities. The kε model and multiphase particle-in-cell method have been utilized for modeling the turbulent fluid flow and solid particles behaviors, respectively. The coupled equations of the velocity and pressure have been solved by using a combination of SIMPLE and PISO algorithms. After validating the simulation, different mixing indices, with different calculation bases, have been investigated, and it has been found that the Lacey mixing index, which was defined based on statistical concepts, is suitable to investigate the segregation/mixing phenomena of this bed in different conditions. Finally, the effects of parameters such as velocity, particle density ratio, jetsam concentration, and initial arrangement on the segregation/mixing behaviors of the bed have been studied.

Findings

The results show that the increase in the superficial gas velocity decreases the mixing index to a minimum value and then increases this index in the beds with mixed initial condition, unlike the beds with separated initial condition. Moreover, an increase in the particle density ratio increases the minimum fluidization velocity of the bed, and also the amount of segregation, and increase in the jetsam concentration increases the value of the mixing index.

Originality/value

A computational fluid dynamics simulation has been presented for the particles segregation phenomenon in the gas–solid fluidized beds.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 9000