Search results

1 – 10 of 86
Article
Publication date: 31 August 2023

Xueli Song, Fengdan Wang, Rongpeng Li, Yuzhu Xiao, Xinbo Li and Qingtian Deng

In structural health monitoring, localization of multiple slight damage without baseline data is significant and difficult. The purpose of this paper is to discuss these issues.

Abstract

Purpose

In structural health monitoring, localization of multiple slight damage without baseline data is significant and difficult. The purpose of this paper is to discuss these issues.

Design/methodology/approach

Damage in the structure causes singularities of displacement modes, which in turn reveals damage. Methods based on the displacement modes may fail to accurately locate the slight damage because the slight damage in engineering structure results in a relatively small variation of the displacement modes. In comparison with the displacement modes, the strain modes are more sensitive to the slight damage because the strain is the derivative of the displacement. As a result, the slight variation in displacement data will be magnified by the derivative, leading to a significant variation of the strain modes. A novel method based on strain modes is proposed for the purpose of accurately locating the multiple slight damage.

Findings

In the two bay beam and steel fixed-fixed beams, the numerical simulations and the experimental cases, respectively, illustrate that the proposed method can achieve more accurate localization in comparison with the one based on the displacement modes.

Originality/value

The paper offers a practical approach for more accurate localization of multiple slight damage without baseline data. And the robustness to measurement noise of the proposed method is evaluated for increasing levels of artificially added white Gaussian noise until its limit is reached, defining its range of practical applicability.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 April 2023

Wanderson Ferreira dos Santos, Ayrton Ribeiro Ferreira and Sergio Persival Baroncini Proença

The present paper aims to explore a computational homogenisation procedure to investigate the full geometric representation of yield surfaces for isotropic porous ductile media…

Abstract

Purpose

The present paper aims to explore a computational homogenisation procedure to investigate the full geometric representation of yield surfaces for isotropic porous ductile media. The effects of cell morphology and imposed boundary conditions are assessed. The sensitivity of the yield surfaces to the Lode angle is also investigated in detail.

Design/methodology/approach

The microscale of the material is modelled by the concept of Representative Volume Element (RVE) or unit cell, which is numerically simulated through three-dimensional finite element analyses. Numerous loading conditions are considered to create complete yield surfaces encompassing high, intermediate and low triaxialities. The influence of cell morphology on the yield surfaces is assessed considering a spherical cell with spherical void and a cubic RVE with spherical void, both under uniform strain boundary condition. The use of spherical cell is interesting as preferential directions in the effective behaviour are avoided. The periodic boundary condition, which favours strain localization, is imposed on the cubic RVE to compare the results. Small strains are assumed and the cell matrix is considered as a perfect elasto-plastic material following the von Mises yield criterion.

Findings

Different morphologies for the cell imply in different yield conditions for the same load situations. The yield surfaces in correspondence to periodic boundary condition show significant differences compared to those obtained by imposing uniform strain boundary condition. The stress Lode angle has a strong influence on the geometry of the yield surfaces considering low and intermediate triaxialities.

Originality/value

The exhaustive computational study of the effects of cell morphologies and imposed boundary conditions fills a gap in the full representation of the flow surfaces. The homogenisation-based strategy allows us to further investigate the influence of the Lode angle on the yield surfaces.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 November 2023

Xindang He, Run Zhou, Zheyuan Liu, Suliang Yang, Ke Chen and Lei Li

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Abstract

Purpose

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Design/methodology/approach

The approach of this review paper is to introduce the research pertaining to DIC. It comprehensively covers crucial facets including its principles, historical development, core challenges, current research status and practical applications. Additionally, it delves into unresolved issues and outlines future research objectives.

Findings

The findings of this review encompass essential aspects of DIC, including core issues like the subpixel registration algorithm, camera calibration, measurement of surface deformation in 3D complex structures and applications in ultra-high-temperature settings. Additionally, the review presents the prevailing strategies for addressing these challenges, the most recent advancements in DIC applications across quasi-static, dynamic, ultra-high-temperature, large-scale and micro-scale engineering domains, along with key directions for future research endeavors.

Originality/value

This review holds a substantial value as it furnishes a comprehensive and in-depth introduction to DIC, while also spotlighting its prospective applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 January 2024

Yang Yang, Yinghui Tian, Runyu Yang, Chunhui Zhang and Le Wang

The objective of this paper is to quantitatively assess shear band evolution by using two-dimensional discrete element method (DEM).

Abstract

Purpose

The objective of this paper is to quantitatively assess shear band evolution by using two-dimensional discrete element method (DEM).

Design/methodology/approach

The DEM model was first calibrated by retrospectively modelling existing triaxial tests. A series of DEM analyses was then conducted with the focus on the particle rotation during loading. An approach based on particle rotation was developed to precisely identify the shear band region from the surrounding. In this approach, a threshold rotation angle ω0 was defined to distinguish the potential particles inside and outside the shear band and an index g(ω0) was introduced to assess the discrepancy between the rotation response inside and outside shear band. The most distinct shear band region can be determined by the ω0 corresponding to the peak g(ω0). By using the proposed approach, the shear band development of two computational cases with different typical localised failure patterns were successfully examined by quantitatively measuring the inclination angle and thickness of shear band, as well as the microscopic quantities.

Findings

The results show that the shear band formation is stress-dependent, transiting from conjugated double shear bands to single shear band with confining stress increasing. The shear band evolution of two typical localised failure modes exhibits opposite trends with increasing strain level, both in inclination angle and thickness. Shear band featured a larger volumetric dilatancy and a lower coordination number than the surrounding. The shear band also significantly disturbs the induced anisotropy of soil.

Originality/value

This paper proposed an approach to quantitatively assess shear band evolution based on the result of two-dimensional DEM modelling.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 April 2024

Celia Rufo-Martín, Ramiro Mantecón, Geroge Youssef, Henar Miguelez and Jose Díaz-Álvarez

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth…

Abstract

Purpose

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth process–structure–properties studies. This study aims to elucidate the mechanistic effects of processing parameters and sterilization on PMMA-based implants.

Design/methodology/approach

The approach comprised manufacturing samples with different raster angle orientations to capitalize on the influence of the filament alignment with the loading direction. One sample set was sterilized using an autoclave, while another was kept as a reference. The samples underwent a comprehensive characterization regimen of mechanical tension, compression and flexural testing. Thermal and microscale mechanical properties were also analyzed to explore the extent of the appreciated modifications as a function of processing conditions.

Findings

Thermal and microscale mechanical properties remained almost unaltered, whereas the mesoscale mechanical behavior varied from the as-printed to the after-autoclaving specimens. Although the mechanical behavior reported a pronounced dependence on the printing orientation, sterilization had minimal effects on the properties of 3D printed PMMA structures. Nonetheless, notable changes in appearance were attributed, and heat reversed as a response to thermally driven conformational rearrangements of the molecules.

Originality/value

This research further deepens the viability of 3D printed PMMA for biomedical applications, contributing to the overall comprehension of the polymer and the thermal processes associated with its implementation in biomedical applications, including personalized implants.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 June 2022

Mohamed A. Shaheen, Lee S. Cunningham and Andrew S.J. Foster

The effect of bolt stripping failure on the ductility of steel end plate beam-column connections has received relatively little investigation to date. The objective with the…

Abstract

Purpose

The effect of bolt stripping failure on the ductility of steel end plate beam-column connections has received relatively little investigation to date. The objective with the present work is to establish a validated numerical model of end plate connections at elevated temperatures, which predicts the mechanical behaviour and failure modes observed in the experimental tests including the bolt stripping failure. Furthermore, the validated FE model was used to investigate the effect of stripping failure on both the rotational and load-bearing capacity of end plate connection.

Design/methodology/approach

The analysis was conducted on a validated numerical model of end plate connections at elevated temperatures, which predicts the mechanical behaviour and failure modes observed in the experimental tests including the bolt stripping failure. The material was modelled considering ductile damage initiation and evolution featured in ABAQUS/Standard.

Findings

This study demonstrates that thick end plates can prevent stripping failure which significantly improves the rotational capacity of the connection. This failure mode can develop readily with thin end plates; however the effect is often unrealistically mitigated through idealised experimental tests. The rotational capacity of a connection can be 5.0 times higher if stripping failure is avoided, particularly at elevated temperatures. Eurocode 3 part 1.8 does not consider the possibility of stripping failure when discussing the requirements for plastic analysis. It is concluded in the present study that by allowing for the possibility of bolt stripping, the mode of failure can often shift from end plate failure to bolt stripping, this in turn significantly reduces the connection rotational capacity.

Originality/value

The effect of bolt stripping failure on the ductility of steel end plate beam-column connections has received relatively little investigation to date.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 19 July 2023

Yiwei Wang, Run Liu, Ruohan Sun and Zewei Xu

The paper aims to find the correlation between the microparameters and the macroparameters of the soil. The study aims to calibrate the macroscale and microscale parameters of…

Abstract

Purpose

The paper aims to find the correlation between the microparameters and the macroparameters of the soil. The study aims to calibrate the macroscale and microscale parameters of rolling resistance contact models to successfully apply the discrete element method to do some research of the geotechnical problem.

Design/methodology/approach

The paper opted for an exploratory study using the PFC3D to simulate the triaxial tests that include more than 50 cases and the coupling analysis method, which considering several effect of various factors.

Findings

The paper provides a quantitative relationship between the macroparameters and microparameters of the rolling resistance linear model and a method for fast calibration of macroscopic parameters is proposed and verified by a triaxial test example.

Originality/value

This paper provides the quantitative relationship of micro and macroparameters in the rolling resistance linear model by studying a single factor and considering the coupling effect of various factors and a fast method for the calibration of microparameters based on the rolling resistance linear model is proposed.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 December 2023

Huifeng Xi, Xiangbo Shu, Manjie Chen, Huanliang Zhang, Shi-qing Huang and Heng Xiao

The primary objective of this study is characterizing the anisotropic mechanical properties of corrugated cardboard and simultaneously simulating its drop cushioning dynamic…

Abstract

Purpose

The primary objective of this study is characterizing the anisotropic mechanical properties of corrugated cardboard and simultaneously simulating its drop cushioning dynamic effects under various drop conditions.

Design/methodology/approach

Static and dynamic tests were conducted on corrugated cardboard to obtain adequate experimental data in different directions. An effective anisotropic constitutive model is introduced by developing the honeycomb materials model in ANSYS LS-Dyna, and an effective approach is established toward effectively determining the material parameters from the test data obtained. The model is validated by comparing simulation results with experimental data from five drop conditions, including bottom drop, front drop, side drop, 30° side drop and edge drop. Additionally, simulations are conducted to study the cushioning performance of the packaging by dropping the corrugated cardboard at different heights.

Findings

The study establishes a fast and effective approach to simulating the drop cushioning performance of corrugated cardboard under various drop conditions, which demonstrates good agreement with experimental data.

Originality/value

This approach is of value for packaging protection and provides guidance for stacking of packaging during transportation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 January 2024

Zhi Li, YiYuan Du, Zhiming Xu, Xuqian Qiao and Hong Zhang

The purpose of this study is to investigate the influence of surface texture on the subsurface characteristics of contact interfaces under elastohydrodynamic lubrication…

61

Abstract

Purpose

The purpose of this study is to investigate the influence of surface texture on the subsurface characteristics of contact interfaces under elastohydrodynamic lubrication condition. As a typical contact form of gears and bearings, the optimization of friction characteristics at the elastohydrodynamic lubrication (EHL) interface has attracted the attention of scholars. Laser surface texturing is a feasible optimization solution, but there have been concerns about whether the surface texture of high-pair parts will affect their fatigue life.

Design/methodology/approach

To examine the impact of texture preparation on the subsurface characteristics of high-pair interfaces under EHL conditions, a point contact EHL model is developed that takes into account the effect of textured surface topography. The pressure and thickness of the oil film are calculated as input parameters under different loads and entrainment velocities. The finite element method is used to simulate the impact of textures with varying diameters, densities and depths on the subsurface characteristics of the elastohydrodynamic interface. According to ISO 25178, analyze the relationship between 3D topography parameters and subsurface characteristics and study the trend of friction characteristics and subsurface characteristics based on the results of the ball on disc friction tests.

Findings

The outcomes suggest that under different rotational velocity and load conditions, the textured surfaces exhibit improved friction reduction effects; however, the creation of textures can result in significant subsurface plastic deformation and local peeling. The existence of texture makes the larger stress zone in the subsurface layer closer to the surface, leading to fatigue failure near the surface. Reasonable design parameters can help enhance the attributes of the subsurface. A smaller Sa and a Str greater than 0.5 can achieve ideal subsurface properties on the textured surface.

Originality/value

This paper investigates the influence of surface texture on the friction and subsurface characteristics of EHL interfaces and analyzes the impact of surface texture on interface contact performance while achieving lubrication improvement functional characteristics. The results provide theoretical support for the optimization design and functional regulation of surface texture in EHL interfaces.

Peer review

The peer review history for this article is https://publons.com/publon/10.1108/ILT-10-2023-0324/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 September 2022

Chafika Ali Ahmed, Abdelmadjid Si Salem, Souad Ait Taleb and Kamal Ait Tahar

This paper aims to investigate the experimental behavior and the reliability of concrete columns repaired using fiber-reinforced polymers (FRPs) under axial compression loading…

Abstract

Purpose

This paper aims to investigate the experimental behavior and the reliability of concrete columns repaired using fiber-reinforced polymers (FRPs) under axial compression loading. The expression of the ultimate axial resistance was assessed from the experimental data of damaged concrete cylinders repaired by externally bonded double-FRP spiral strips.

Design/methodology/approach

The tested columns bearing capacity mainly depends of the elasticity modulus of both damaged and undamaged concrete have been considered in addition to the applied load and the cylinder diameter as random variables in the expression of the failure criterion. The reliability indicators were assessed using first order second moment method.

Findings

The emphasized test results, statistically fitted show that the strength has been retrofitted for all repaired specimens whatever the degree of initial damage. However, the gain in axial strength is inversely proportional to the degree of damage.

Originality/value

The efficiency of a new FRP repair procedure using double-spiral strips was studied. This research provides a technical and economical solution for retrofitting existing concrete columns. Finally, the random character of the variables that govern the studied system shows the accuracy and safety of the proposed original design.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 86