Search results

1 – 10 of over 5000
Article
Publication date: 15 June 2022

Mohamed A. Shaheen, Lee S. Cunningham and Andrew S.J. Foster

The effect of bolt stripping failure on the ductility of steel end plate beam-column connections has received relatively little investigation to date. The objective with the…

Abstract

Purpose

The effect of bolt stripping failure on the ductility of steel end plate beam-column connections has received relatively little investigation to date. The objective with the present work is to establish a validated numerical model of end plate connections at elevated temperatures, which predicts the mechanical behaviour and failure modes observed in the experimental tests including the bolt stripping failure. Furthermore, the validated FE model was used to investigate the effect of stripping failure on both the rotational and load-bearing capacity of end plate connection.

Design/methodology/approach

The analysis was conducted on a validated numerical model of end plate connections at elevated temperatures, which predicts the mechanical behaviour and failure modes observed in the experimental tests including the bolt stripping failure. The material was modelled considering ductile damage initiation and evolution featured in ABAQUS/Standard.

Findings

This study demonstrates that thick end plates can prevent stripping failure which significantly improves the rotational capacity of the connection. This failure mode can develop readily with thin end plates; however the effect is often unrealistically mitigated through idealised experimental tests. The rotational capacity of a connection can be 5.0 times higher if stripping failure is avoided, particularly at elevated temperatures. Eurocode 3 part 1.8 does not consider the possibility of stripping failure when discussing the requirements for plastic analysis. It is concluded in the present study that by allowing for the possibility of bolt stripping, the mode of failure can often shift from end plate failure to bolt stripping, this in turn significantly reduces the connection rotational capacity.

Originality/value

The effect of bolt stripping failure on the ductility of steel end plate beam-column connections has received relatively little investigation to date.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 April 2014

Siew-Hong Ding, Shahrul Kamaruddin and Ishak Abdul Azid

An optimal maintenance policy is key to the improvement of the availability and reliability of a system at an acceptable level without a significant increase in investment…

1011

Abstract

Purpose

An optimal maintenance policy is key to the improvement of the availability and reliability of a system at an acceptable level without a significant increase in investment. However, the selection process is a complicated task because it requires in-depth knowledge on maintenance policies and on the technical requirements of maintenance. The difficulties and complexity of the selection process arise from the combination of conflicting maintenance constraints such as available spares, size of workforce, and maintenance skills. The paper aims to discuss these issues.

Design/methodology/approach

The proposed maintenance policy selection (MPS) model is separated into three major phases. The first phase identifies the critical system (CS) based on failure frequency. The failure mechanism in the CS is then analyzed by using a failure mode and effect analysis in the second phase. In the third phase, a multi-criteria decision making method, called the technique for order of preference by similarity to ideal solution, is adopted to identify an optimal maintenance policy that can minimize the failures.

Findings

Through a case study, preventive maintenance was selected as the optimal maintenance policy for the reduction of system failures. The results obtained from the case study not only provide evidence of the feasibility and practicability of the developed model, but also test the acceptability and rationale of the developed model from the industry perspective. Valuable knowledge and experience from employees were extracted and utilized through the proposed model to rank the optimal maintenance policy based on the capability to reduce failure.

Originality/value

The practicality of the MPS model is justified through an implementation in the palm oil industry. The application of the MPS model can also be extended to other manufacturing industries.

Details

Journal of Manufacturing Technology Management, vol. 25 no. 3
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 17 June 2015

Lucy Bull, Eric J. Palmiere, Richard P. Thackray, Ian W. Burgess and Buick Davison

In structural fire engineering, the importance of bolt assemblies is often overlooked. Connection design uses the temperature-dependent bolt strength-reduction factors prescribed…

Abstract

In structural fire engineering, the importance of bolt assemblies is often overlooked. Connection design uses the temperature-dependent bolt strength-reduction factors prescribed in Eurocode 3, despite the existence of two distinct failure modes under tension; necking of the bolt shank, and thread-stripping. While literature exists to predict failure modes at ambient temperature, there is no method for failure mode prediction for elevated temperatures where ductility is critical to avoid collapse. Galvanised M20 structural bolt assemblies and bolt material from a single batch have been tested under tension at a range of temperatures and strain-rates typical of those experienced in fire. Turned-down bolt test data produced stress-strain curves characteristic of different microstructures at ambient temperature, despite a tempered-martensitic microstructure being specified in the standards. The failure modes of bolt assemblies were found to be dependent on the as-received microstructure at ambient temperature. At elevated temperatures, however, only thread-stripping was observed.

Details

Journal of Structural Fire Engineering, vol. 6 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 31 March 2022

Seyed Vahid Khonsari, Shahin Nejati, Mohammadreza Rahdan and Mahdi Ahmadi

The paper aims to report a fire test conducted on a three-dimensional frame in order to investigate the behaviour of bare steel flush end-plate connections with relatively low…

Abstract

Purpose

The paper aims to report a fire test conducted on a three-dimensional frame in order to investigate the behaviour of bare steel flush end-plate connections with relatively low thickness at elevated temperatures.

Design/methodology/approach

A half-scale model was fabricated and exposed to modified (scaled) ISO 834 heating curve using a semi-open furnace. The maximum temperature inside the furnace reached 1,026 °C.

Findings

The rotations of connections are reported and compared with those of a previous study on an exactly the same model with thick end-plates. Various modes of failure such as local buckling of the beams flanges and lateral-torsional buckling of beams were observed during the test. Finally, the structure collapsed after 29 min of heating due to the fracture of weld between one of the beams and one of its attached end-plates whilst the other beam had undergone a maximum deflection of 35 cm (≈ 1/6 span length). Other observed failure modes included bolt fracture, bolt thread stripping and large inelastic deformation of the end-plates.

Originality/value

Although the adoption of thin end-plates increased the rotational capacity of the connections, it did not improve the robustness of the structure under fire conditions.

Details

Journal of Structural Fire Engineering, vol. 14 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 30 March 2022

Jinliang Liu and Fangpu Yan

In this paper, the effects of geopolymer adhesive, the number of CFRP layers and the width of pre-crack on the flexural performance of reinforced concrete beams strengthened with…

Abstract

Purpose

In this paper, the effects of geopolymer adhesive, the number of CFRP layers and the width of pre-crack on the flexural performance of reinforced concrete beams strengthened with CFRP were studied, and the flexural capacity of strengthened beams was calculated theoretically.

Design/methodology/approach

Reinforced concrete beams were strengthened with CFRP by geopolymer adhesive, and flexural load tests were conducted to observe the reinforcement effect. Based on the method of calculating the flexural capacity of reinforced concrete beams, a theoretical calculation model on the flexural capacity of reinforced concrete beams strengthened with geopolymer adhesive bonded CFRP was established.

Findings

The test data shown the flexural capacity of epoxy resin adhesive CFRP strengthened reinforced concrete beams is 7.76% higher than that geopolymer adhesive is used. The flexural capacity of reinforced concrete beams strengthened with three layers of CFRP is 1.86% higher than that two layers are adopted. The mean ratio of the test data and the calculation results of the flexural capacity is 0.973, and the mean square error is 0.008. It can be seen that the test data are in good agreement with the theoretical value.

Originality/value

This paper provides data support for the popularization and application of the new environment-friendly reinforcement technology, contributes to the cause of environmental protection, and provides a new method for strengthening reinforced concrete beams.

Details

International Journal of Structural Integrity, vol. 13 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 October 2018

Jiawei Wang, Yanmin Jia, Guanhua Zhang, Jigang Han and Jinliang Liu

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer (CFRP) plates…

Abstract

Purpose

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer (CFRP) plates to existing bridges. Hence, the actual capacity for strengthening existing bridges with prestressed CFRP plates is becoming an important concern for researchers. The paper aims to discuss these issues.

Design/methodology/approach

Static load tests of in-service prestressed concrete hollow slabs before and after strengthening are conducted. Based on the results of the tests, the failure characteristics, failure mechanism and bending performance of the slabs are compared and analyzed. Nonlinear finite element method is also used to calculate the flexural strength of the strengthened beams prestressed with CFRP plates.

Findings

Test results show that prestressed CFRP plate strengthening technology changes the failure mode of hollow slabs, delays the development of deflection and cracks, raises cracking and ultimate load-carrying capacity and remarkably improves mechanical behavior of the slab. In addition, the nonlinear finite element analyses are in good agreement with the test results.

Originality/value

Strengthening with prestressed CFRP plates has greater advantages compared to traditional CFRP plate strengthening technology and improves active material utilization. The presented finite element method can be applied in the flexural response calculations of strengthened beams prestressed with CFRP plates. The research results provide technical basis for maintenance and reinforcement design of existing bridges.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 March 2024

Lifeng Wang, Fei Yu, Ziwang Xiao and Qi Wang

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become…

Abstract

Purpose

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become super-reinforced beams, and there are security risks in the actual use of super-reinforced beams. In order to avoid the occurrence of this situation, the purpose of this paper is to study the calculation method of the maximum number of bonded steel plates to reinforce reinforced concrete beams.

Design/methodology/approach

First of all, when establishing the limit failure state of the reinforced member, this paper comprehensively considers the role of the tensile steel bar and steel plate and takes the load effect before reinforcement as the negative contribution of the maximum number of bonded steel plates that can be used for reinforcement. Through the definition of the equivalent tensile strength, equivalent elastic modulus and equivalent yield strain of the tensile steel bar and steel plate, a method to determine the relative limit compression zone height of the reinforced member is obtained. Second, based on the maximum ratio of (reinforcement + steel plate), the relative limit compression zone height and the equivalent tensile strength of the tensile steel bar and steel plate of the reinforced member, the calculation method of the maximum number of bonded steel plates is derived. Then, the static load test of the test beam is carried out and the corresponding numerical model is established, and the reliability of the numerical model is verified by comparison. Finally, the accuracy of the calculation method of the maximum number of bonded steel plates is proved by the numerical model.

Findings

The numerical simulation results show that when the steel plate width is 800 mm and the thickness is 1–4 mm, the reinforced concrete beam has a delayed yield platform when it reaches the limit state, and the failure mode conforms to the basic stress characteristics of the balanced-reinforced beam. When the steel plate thickness is 5–8 mm, the sudden failure occurs without obvious warning when the reinforced concrete beam reaches the limit state. The failure mode conforms to the basic mechanical characteristics of the super-reinforced beam failure, and the bending moment of the beam failure depends only on the compressive strength of the concrete. The results of the calculation and analysis show that the maximum number of bonded steel plates for reinforced concrete beams in this experiment is 3,487 mm2. When the width of the steel plate is 800 mm, the maximum thickness of the steel plate can be 4.36 mm. That is, when the thickness of the steel plate, the reinforced concrete beam is still the balanced-reinforced beam. When the thickness of the steel plate, the reinforced concrete beam will become a super-reinforced beam after reinforcement. The calculation results are in good agreement with the numerical simulation results, which proves the accuracy of the calculation method.

Originality/value

This paper presents a method for calculating the maximum number of steel plates attached to the bottom of reinforced concrete beams. First, based on the experimental research, the failure mode of reinforced concrete beams with different number of steel plates is simulated by the numerical model, and then the result of the calculation method is compared with the result of the numerical simulation to ensure the accuracy of the calculation method of the maximum number of bonded steel plates. And the study does not require a large number of experimental samples, which has a certain economy. The research result can be used to control the number of steel plates in similar reinforcement designs.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 January 2020

Zeng Wu, Wei Ma, Hong-xiu Xiao and Jing-kun Zhang

Fastener technology is one of the key technologies of the ballastless track structure, and the spring strip is the key component to realize the fastener function. Based on the…

Abstract

Purpose

Fastener technology is one of the key technologies of the ballastless track structure, and the spring strip is the key component to realize the fastener function. Based on the fatigue test of the WJ-7 type fastener of the ballastless track in China, it is concluded that the fatigue damage of an elastic strip is the main reason for the decline of service performance of the fastener. The purpose of this paper is to discuss the fatigue life of the fastener.

Design/methodology/approach

First, a DH3818 static strain tester is used to measure the static strain signal in the elastic strip fatigue test, and then the fatigue limit of the WJ-7 elastic strip is calculated. Finally, the fatigue life of the fastener strip is estimated.

Findings

The findings of the paper are as follows: first, the lowest fatigue life with a survival rate of 99 percent should be taken as a reference for the service times of WJ-7; second, the fatigue life of the modified formula found to be short under the same stress amplitude.

Originality/value

The fatigue test is processed by the authors and the results of elastic strip are obtained based on the test. Meanwhile, the corresponding limit value of the fatigue stress amplitude is calculated based on the tested results.

Details

International Journal of Structural Integrity, vol. 11 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 September 2022

Chafika Ali Ahmed, Abdelmadjid Si Salem, Souad Ait Taleb and Kamal Ait Tahar

This paper aims to investigate the experimental behavior and the reliability of concrete columns repaired using fiber-reinforced polymers (FRPs) under axial compression loading…

Abstract

Purpose

This paper aims to investigate the experimental behavior and the reliability of concrete columns repaired using fiber-reinforced polymers (FRPs) under axial compression loading. The expression of the ultimate axial resistance was assessed from the experimental data of damaged concrete cylinders repaired by externally bonded double-FRP spiral strips.

Design/methodology/approach

The tested columns bearing capacity mainly depends of the elasticity modulus of both damaged and undamaged concrete have been considered in addition to the applied load and the cylinder diameter as random variables in the expression of the failure criterion. The reliability indicators were assessed using first order second moment method.

Findings

The emphasized test results, statistically fitted show that the strength has been retrofitted for all repaired specimens whatever the degree of initial damage. However, the gain in axial strength is inversely proportional to the degree of damage.

Originality/value

The efficiency of a new FRP repair procedure using double-spiral strips was studied. This research provides a technical and economical solution for retrofitting existing concrete columns. Finally, the random character of the variables that govern the studied system shows the accuracy and safety of the proposed original design.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 27 January 2022

Suzanne J. Konzelmann, Victoria Chick and Marc Fovargue-Davies

The debate about corporate purpose is a recurring one that has re-emerged today. What should be the guiding principles of business: the pursuit of profit or a contribution to…

Abstract

The debate about corporate purpose is a recurring one that has re-emerged today. What should be the guiding principles of business: the pursuit of profit or a contribution to public interest? We trace key elements in this debate in Britain and America, from the interwar years, when John Maynard Keynes and Adolf Berle made important contributions, to the 1970s, when events ushered in a return to laissez-faire and the rise to dominance of the shareholder primacy model of corporate governance and purpose, to today. Both the earlier and the current debates are centered around whether we see business institutions as strictly private entities, transacting with their suppliers, workers, and customers on terms agreed with or imposed upon these groups, or as part of society at large and therefore expected to contribute to what society deems to be its interests. Whether current developments will ultimately produce a shift in corporate purpose akin to the one that followed the Second World War remains to be seen. But the parallels to the interwar debates, and the uncertain economic, political, and social environments in which they took place, are striking. Our objective is to see what might be learned from the past to inform the current direction of thought concerning capitalism and corporate purpose.

Details

The Corporation: Rethinking the Iconic Form of Business Organization
Type: Book
ISBN: 978-1-80043-377-9

Keywords

1 – 10 of over 5000