Search results

1 – 10 of 39
Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 April 2024

Kryzelle M. Atienza, Apollo E. Malabanan, Ariel Miguel M. Aragoncillo, Carmina B. Borja, Marish S. Madlangbayan and Emel Ken D. Benito

Existing deterministic models that predict the capacity of corroded reinforced concrete (RC) beams have limited applicability because they were based on accelerated tests that…

Abstract

Purpose

Existing deterministic models that predict the capacity of corroded reinforced concrete (RC) beams have limited applicability because they were based on accelerated tests that induce general corrosion. This research gap was addressed by performing a combined numerical and statistical analysis on RC beams, subjected to natural corrosion, to achieve a much better forecast.

Design/methodology/approach

Data of 42 naturally corroded beams were collected from the literature and analyzed numerically. Four constitutive models and their combinations were considered: the elastic-semi-plastic and elastic-perfectly-plastic models for steel, and two tensile models for concrete with and without the post-cracking stresses. Meanwhile, Popovics’ model was used to describe the behavior of concrete under compression. Corrosion coefficients were developed as functions of corrosion degree and beam parameters through linear regression analysis to fit the theoretical moment capacities with test data. The performance of the coefficients derived from different combinations of constitutive laws was then compared and validated.

Findings

The results showed that the highest accuracy (R2 = 0.90) was achieved when the tensile response of concrete was modeled without the residual stresses after cracking and the steel was analyzed as an elastic-perfectly-plastic material. The proposed procedure and regression model also showed reasonable agreement with experimental data, even performing better than the current models derived from accelerated tests and traditional procedures.

Originality/value

This study presents a simple but reliable approach for quantifying the capacity of RC beams under more realistic conditions than previously reported. This method is simple and requires only a few variables to be employed. Civil engineers can use it to obtain a quick and rough estimate of the structural condition of corroding RC beams.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 3 May 2024

Cesar Omar Balderrama-Armendariz, Sergio Esteban Arbelaez-Rios, Santos-Adriana Martel-Estrada, Aide Aracely Maldonado-Macias, Eric MacDonald and Julian I. Aguilar-Duque

This study aims to propose the reuse of PA12 (powder) in another AM process, binder jettiinng, which is less sensitive to the chemical and mechanical degradation of the powder…

Abstract

Purpose

This study aims to propose the reuse of PA12 (powder) in another AM process, binder jettiinng, which is less sensitive to the chemical and mechanical degradation of the powder after multiple cycles in the laser system.

Design/methodology/approach

The experimental process for evaluating the reuse of SLS powders in a subsequent binder jetting process consists of four phases: powder characterization, bonding analysis, mixture testing and mixture characteristics. Analyses were carried out using techniques such as Fourier Transform Infrared Spectroscopy, scanning electron microscopy, thermogravimetric analysis and stress–strain tests for tension and compression. The surface roughness, color, hardness and density of the new mixture were also determined to find physical characteristics. A Taguchi design L8 was used to search for a mixture with the best mechanical strength.

Findings

The results indicated that the integration of waste powder PA12 with calcium sulfate hemihydrate (CSH) generates appropriate particle distribution with rounded particles of PA12 that improve powder flowability. The micropores observed with less than 60 µm, facilitated binder and infiltrant penetration on 3D parts. The 60/40 (CSH-PA12) mixture with epoxy resin postprocessing was found to be the best-bonded mixture in mechanical testing, rugosity and hardness results. The new CSH-PA12 mixture resulted lighter and stronger than the CSH powder commonly used in binder jetting technology.

Originality/value

This study adds value to the polymer powder bed fusion process by using its waste in a circular process. The novel reuse of PA12 waste in an established process was achieved in an accessible and economical manner.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 May 2024

Hansu Kim, Luke Crispo, Nicholas Galley, Si Mo Yeon, Yong Son and Il Yong Kim

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight…

Abstract

Purpose

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight topology-optimized designs with improved performance, but limited build volume restricts the printing of large components. The purpose of this paper is to design a lightweight aircraft seat leg structure using topology optimization (TO) and MAM with build volume restrictions, while satisfying structural airworthiness certification requirements.

Design/methodology/approach

TO was used to determine a lightweight conceptual design for the seat leg structure. The conceptual design was decomposed to meet the machine build volume, a detailed CAD assembly was designed and print orientation was selected for each component. Static and dynamic verification was performed, the design was updated to meet the structural requirements and a prototype was manufactured.

Findings

The final topology-optimized seat leg structure was decomposed into three parts, yielding a 57% reduction in the number of parts compared to a reference design. In addition, the design achieved an 8.5% mass reduction while satisfying structural requirements for airworthiness certification.

Originality/value

To the best of the authors’ knowledge, this study is the first paper to design an aircraft seat leg structure manufactured with MAM using a rigorous TO approach. The resultant design reduces mass and part count compared to a reference design and is verified with respect to real-world aircraft certification requirements.

Article
Publication date: 19 December 2022

Khaled F. El-Nemr, H. Radi and Reham H. Helal

One of the low-cost minerals that can be used as reinforcing filler in polymer industry is pumice powder. Pumice is a highly porous volcanic glass formed during explosive…

Abstract

Purpose

One of the low-cost minerals that can be used as reinforcing filler in polymer industry is pumice powder. Pumice is a highly porous volcanic glass formed during explosive eruptions. This pumice has received significant interest because of its large surface area with various polar groups and can be processed easily.

Design/methodology/approach

This study is carried out to investigate the effect of partial replacement of silica (as traditional filler) by naturally occurring pumice powder to improve the thermal and mechanical properties of nitrile butadiene rubber cured with electron beam radiation (doses from 25 to 150 kGy).

Findings

The results indicated that the addition of pumice powder increase the tensile strength at lower doses up to 75 kGy (especially at concentration of 5 phr). Besides, an improvement in the thermal stability was attained with the addition of pumice powder.

Originality/value

Pumice powder is volcanic-based alumina and silica which is mainly composed of SiO2. It has porous structure which is formed by dissolved gases precipitated during the cooling as the lava hurtles through air. Due to its porous structure, it has low density and high thermal insulation. It also has high temperature and chemical resistance, for these reasons it became preferable material to be used as filler in the plastic and rubber industry.

Details

Pigment & Resin Technology, vol. 53 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 April 2024

Muhammad Abas, Tufail Habib and Sahar Noor

This study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D…

Abstract

Purpose

This study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D scanning with the Kinect sensor and conducts a comparative analysis of SAFO durability with varying thicknesses and materials, including polylactic acid (PLA) and carbon fiber-reinforced (PLA-C), to address research gaps from prior studies.

Design/methodology/approach

In this study, the methodology comprises key components: data capture using a cost-effective Microsoft Kinect® Xbox 360 scanner to obtain precise leg dimensions for SAFOs. SAFOs are designed using CAD tools with varying thicknesses (3, 4, and 5 mm) while maintaining consistent geometry, allowing controlled thickness impact investigation. Fabrication uses PLA and PLA-C materials via FDM 3D printing, providing insights into material suitability. Mechanical analysis uses dual finite element analysis to assess force–displacement curves and fracture behavior, which were validated through experimental testing.

Findings

The results indicate that the precision of the scanned leg dimensions, compared to actual anthropometric data, exhibits a deviation of less than 5%, confirming the accuracy of the cost-effective scanning approach. Additionally, the research identifies optimal thicknesses for SAFOs, recommending a 4 and 5 mm thickness for PLA-C-based SAFOs and an only 5 mm thickness for PLA-based SAFOs. This optimization enhances the overall performance and effectiveness of these orthotic solutions.

Originality/value

This study’s innovation lies in its holistic approach, combining low-cost 3D scanning, 3D printing and computational simulations to optimize SAFO materials and thickness. These findings advance the creation of cost-effective and efficient orthotic solutions.

Article
Publication date: 8 May 2024

Vishal Kumar and Amitava Mandal

Wire-arc-based additive manufacturing (WAAM) is a promising technology for the efficient and economical fabrication of medium-large components. However, the anisotropic behavior…

Abstract

Purpose

Wire-arc-based additive manufacturing (WAAM) is a promising technology for the efficient and economical fabrication of medium-large components. However, the anisotropic behavior of the multilayered WAAM-fabricated components remains a challenging problem.

Design/methodology/approach

The purpose of this paper is to conduct a comprehensive study of the grain morphology, crystallographic orientation and texture in three regions of the WAAM printed component. Furthermore, the interdependence of the grain morphology in different regions of the fabricated component with their mechanical and tribological properties was established.

Findings

The electron back-scattered diffraction analysis of the top and bottom regions revealed fine recrystallized grains, whereas the middle regions acquired columnar grains with an average size of approximately 8.980 µm. The analysis revealed a higher misorientation angle and an intense crystallographic texture in the upper and lower regions. The investigations found a higher microhardness value of 168.93 ± 1.71 HV with superior wear resistance in the bottom region. The quantitative evaluation of the residual stress detected higher compressive stress in the upper regions. Evidence for comparable ultimate tensile strength and greater elongation (%) compared to its wrought counterpart has been observed.

Originality/value

The study found a good correlation between the grain morphology in different regions of the WAAM-fabricated component and their mechanical and wear properties. The Hall–Petch relationship also established good agreement between the grain morphology and tensile test results. Improved ductility compared to its wrought counterpart was observed. The anisotropy exists with improved mechanical properties along the longitudinal direction. Moreover, cylindrical components have superior tribological properties compared with cuboidal components.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2023

Eslam Taha, Mostafa Attia Mohie, Mahmoud Sayed Korany, Naglaa Aly, Alaa Ropy and Mosaad Negem

This study aims to investigate profoundly the protection of oil painting from deterioration using molybdenum trisulphide quantum dots (MoS3 QDs) against microbe, dirt accumulation…

Abstract

Purpose

This study aims to investigate profoundly the protection of oil painting from deterioration using molybdenum trisulphide quantum dots (MoS3 QDs) against microbe, dirt accumulation and ultraviolet (UV) degradation.

Design/methodology/approach

The protection of painting against different deterioration factors necessitates the sustainable methods and advanced techniques. Scanning electron microscopy and transmission electron microscopy have been used to investigate the morphological structure of the painting and MoS3 QDs, respectively, and optical microscopy was used to examine antibacterial activity of MoS3 QDs towards different types of bacteria. To investigate the protection of painting against deterioration, the Fourier transform IR spectroscopy (FTIR) was used to investigate the paintings left in open air for a year. Chemical composition and crystal structure of MoS3 QDs have been studied using X-ray diffraction and X-ray photoelectron spectroscopy analysis, respectively.

Findings

The addition of MoS3 nanoparticles into painted coatings enhances the durability of linseed oil-based paintings toward UV ageing regarding the change in colour which confirmed by FTIR analysis. The protection of oil painting opposed to various deterioration factors was developed by involving of MoS3 QDs in the coating of the painting. Antibacterial effect of MoS3 QDs was tested against different types of bacteria such as Pseudomonas aeruginosa confirming that the MoS3 QDs involved in the coatings of oil paintings produces a high protection layer for the paintings against several microbial attacks. In addition, coatings containing MoS3 QDs reduce the accumulation of dirt on oil paintings when subjected to open air for a year.

Originality/value

The novel MoS3 QDs was used to form a protective and transparent coating layer for the oil painting to overcome the deterioration, displays the promising protection and can be applied for different oil paintings.

Details

Pigment & Resin Technology, vol. 53 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 May 2024

Feng Zhou, S. S. Lu, B. Jiang and R.G. Song

This study aims to study the formation mechanism of micro-arc oxidation (MAO) coating on AZ31 magnesium alloy and how the annealing process affects its corrosion resistance.

Abstract

Purpose

This study aims to study the formation mechanism of micro-arc oxidation (MAO) coating on AZ31 magnesium alloy and how the annealing process affects its corrosion resistance.

Design/methodology/approach

This study involved immersion experiments, electrochemical experiments and slow strain rate tensile experiments, along with scanning electron microscopy, optical microscopy observation and X-ray diffraction analysis.

Findings

The findings suggest that annealing treatment can refine the grain size of AZ31 magnesium alloy to an average of 6.9 µm at 300°C. The change in grain size leads to a change in conductivity, which affects the performance of MAO coatings. The MAO coating obtained by annealing the substrate at 300°C has smaller pores and porosity, resulting in better adhesion and wear resistance.

Originality/value

The coating acts as a barrier to prevent corrosive substances from entering the substrate. However, the smaller pores and porosity reduce the channels for the corrosive solution to pass through the coating. When the coating cracks or falls off, the corrosive medium and substrate come into direct contact. Smaller and uniform grains have better corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Access

Year

Last week (39)

Content type

Article (39)
1 – 10 of 39