Search results

1 – 10 of 455
Article
Publication date: 1 August 2005

S.H. El‐Sabbagh, A.I. Hussain and M.A. Abd El‐Ghaffar

To evaluate the performance of the compatibiliser of epoxidised soyabean oil‐free fatty acid prepared on the NBR/EPDM blends compared with maleic anhydride and also to explore the…

1724

Abstract

Purpose

To evaluate the performance of the compatibiliser of epoxidised soyabean oil‐free fatty acid prepared on the NBR/EPDM blends compared with maleic anhydride and also to explore the effect of loading the compatibiliser NBR/EPDM rubber blend with unmodified and modified polypropylene fibres on the mechanical properties of the blend.

Design/methodology/approach

To achieve desirable rheological and physico‐mechanical properties of NBR/EPDM rubber blend, various compositions were made by incorporating different doses of the compatibiliser of epoxidised soyabean oil‐free fatty acid prepared and maleic anhydride to form NBR/EPDM blends. The effect of loading the compatibiliser rubber blend with unmodified and modified polypropylene fibres on the mechanical properties of the blend was investigated.

Findings

The incorporation of epoxidised soyabean oil‐free fatty acid or maleic anhydride into NBR/EPDM blend greatly enhanced their compatibility improved the rheological, as well as physical properties of rubber blends. The addition of NBR to EPDM improved the motor oil swelling resistance of EPDM. Blending of the two individual rubbers without a compatibiliser generally exhibited a non‐synergistic effect with respect to the physical properties. The strain energy, tensile strength, Young's modulus and strain at yield varied linearly with composition in the presence of compatibiliser, but deviated from linearity in the absence of compatibiliser. Reinforcement of the NBR/EPDM blend with modified polypropylene fibres enhanced the physical properties more significantly than with the unmodified ones.

Research limitations/implications

The compatibiliser of epoxidised soyabean oil was prepared by reacting in situ soyabean oil‐free fatty acid with per‐acetic acid.

Practical implications

The method developed provided a simple and practical solution to improving the rheological and physico‐mechanical properties of the NBR/EPDM rubber blend.

Originality/value

The method for enhancing rheological and physico‐mechanical properties of NBR/EPDM rubber blend loaded with modified polypropylene fibres was very important and showed a synergistic effect and could find numerous applications in the rubber and plastic industries.

Details

Pigment & Resin Technology, vol. 34 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 March 2016

Dawit Zenebe Segu

The purpose of this paper is to study the possibility and validity of using radio frequency (RF) power argon (AR) ion plasma treatment to modify the surface of nitrile butadiene…

Abstract

Purpose

The purpose of this paper is to study the possibility and validity of using radio frequency (RF) power argon (AR) ion plasma treatment to modify the surface of nitrile butadiene rubber (NBR) and the change in the chemical structure under various bias voltage. Using wear test, the authors also compared the friction and wear properties of untreated and treated NBR.

Design/methodology/approach

The hybrid RF-power sputtering system was used to generate RF Ar plasma to modify the surface of NBR specimens. The tribological properties were evaluated by ball-on-disc test using a load cell mounted on the ball holder.

Findings

It was found that the NBR surface treated by the Ar plasma improved the wettability, friction and wear performance than the untreated NBR. The ATR-IR analysis indicated that the improvement come from the oxygen based functional groups generated on the surface of NBR. The improvement of friction and wear resistance may also come from the formation of nanostructure surface.

Originality/value

In this study, the authors develop the RF AR ion plasma treatment at different bias voltage, and it has been used to modify the surface of NBR to increase the tribological performance.

Details

Industrial Lubrication and Tribology, vol. 68 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 May 2015

Salwa H El-Sabbagh, Doaa S. Mahmoud, M. F. Zawrah, Nivin M. Ahmed and Magdy W. Sabaa

The purpose of this paper is to evaluate the efficiency of organobentonite (OB) as reinforcing filler in acrylonitrile-butadiene rubber (NBR). The composites were prepared using…

Abstract

Purpose

The purpose of this paper is to evaluate the efficiency of organobentonite (OB) as reinforcing filler in acrylonitrile-butadiene rubber (NBR). The composites were prepared using different loadings of OB and studying in details their properties. A series of OB was modified using surfactant N-cetyl-N, N, N-trimethyl ammonium bromide (CTAB) with concentrations 0.5, 1 and 2 cation exchange capacity (CEC) of bentonite.

Design/methodology/approach

The different bentonites were characterized using different analytical and spectro-photometric techniques, such as infra red, X-ray diffraction, thermogravimetric analysis and scanning electron microscopy, while rubber vulcanizate rheological, morphological, swelling and thermal properties were examined using different standard instrumental testing and methods.

Findings

The study revealed that the modification of bentonite using CTAB showed significant enhancement on NBR properties, and the optimum filler loading was 12 phr for both 0.5CEC OB and 2CEC OB. These modified bentonites improved reinforcing properties to NBR vulcanizates. Also, results showed that composites exhibited remarkable improvements in tensile strength, elongation at break and hardness in the presence of modified bentonite and also an increase in thermal stability.

Research limitations/implications

Na-B cannot be applied in rubber matrix without modification because it is incompatible with it.

Practical implications

The modified bentonite is considered as efficient reinforcing filler which can replace other fillers because it has lower surface energy and improved intercalating behaviour in rubber matrix.

Originality/value

These papered bentonites are cheap with relatively high purity, which make rubber/clay composites emerge as new class of material and can be used in different fields other than rubber.

Article
Publication date: 23 March 2010

A.I. Hussain, I.F. Abadir and S.M. El Marsafy

The purpose of this paper is to study the effect of incorporating some inorganic fillers, namely aluminium oxide and aluminium hydroxide on the rheological, mechanical and thermal…

Abstract

Purpose

The purpose of this paper is to study the effect of incorporating some inorganic fillers, namely aluminium oxide and aluminium hydroxide on the rheological, mechanical and thermal behaviour of acrylonitrile‐butadiene rubber (NBR) vulcanizates.

Design/methodology/approach

For improving physico‐mechanical properties of NBR vulcanizates, various compositions were made by incorporating different concentrations of employed fillers with NBR. These properties included the torque, cure time, tensile strength, elongation at break, swelling, diffusivity, as well as thermal behaviour of the loaded and unloaded NBR with fillers were characterised.

Findings

The incorporation of the two investigated fillers improves the thermal behaviour of the vulcanizates, especially aluminium hydroxide. All samples showed more or less a first order decomposition kinetics, for which the activation energy ranged from 177 to 187 kg/mol.

Research limitations/implications

NBR is extensively used industrially for its single, most important property, which is an exceptional resistance to attack by oils and solvents. However, incorporation of fillers in (NBR) leads to the development of improved, competitive properties of the vulcanizate. A further study must be carried out on the flame retarding effect of the fillers, beside the effect of surface treatment of the fillers on the dispersibility and physico‐mechanical properties of the vulcanizates.

Practical implications

The use of two investigated fillers provided a simple and practical solution to improving the resistance to swelling in motor and break oil as well as the thermal behaviour of the NBR.

Originality/value

The use of these fillers was novel and could be used in many rubber industries especially in gasket and oil seals.

Details

Pigment & Resin Technology, vol. 39 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 April 2021

Hoda Sabry Othman, Maher A. El-Hashash, S.H. El-Sabbagh, A.A. Ward and Galal A.M. Nawwar

Calcium and Zinc lignates were proven to be good antioxidants for rubber composites. The purpose of this paper is to evaluate the copper lignate antioxidant activity along with…

Abstract

Purpose

Calcium and Zinc lignates were proven to be good antioxidants for rubber composites. The purpose of this paper is to evaluate the copper lignate antioxidant activity along with evaluating its electrical conductivity in rubber composites.

Design/methodology/approach

The antioxidant activity of the Cu-LSF complex was compared with that of standard commercial antioxidant additives as a green alternative. The rheological characteristics, thermal aging and mechanical and electrical properties were evaluated for the NBR vulcanizates containing the different antioxidants in the presence or absence of coupling agents.

Findings

Results revealed that the Cu-LSF complex (5 phr) can function as a compatibilizing, antioxidant and electrical conductivity agent.

Originality/value

The new copper complex prepared from paper-pulping black liquor of wastes could be used as a green antioxidant and electrical conductivity agent in rubber composites.

Article
Publication date: 15 June 2015

Mengran Liu, Ze ming Jian, Guojun Zhang, Nan Guo and Wendong Zhang

The purpose of this paper is to present a novel nitrile butadiene rubber (NBR) packaging structure, which can solve the problems of the low sensitivity, narrow frequency band and…

Abstract

Purpose

The purpose of this paper is to present a novel nitrile butadiene rubber (NBR) packaging structure, which can solve the problems of the low sensitivity, narrow frequency band and fluctuating frequency response curve of the MEMS bionic vector hydrophone.

Design/methodology/approach

A 0.05-mm-thick NBR sound-transparent cap was designed by theoretical analysis and simulation to reduce the signal attenuation caused by the packaging structure, and the frequency band of the hydrophone has been extended to 4 kHz. In this work, the vector hydrophone was fabricated by the MEMS technology and packaged with the NBR sound-transparent cap. The performance indicators were calibrated in the National Defence Underwater Acoustics Calibration Laboratory of China.

Findings

The results show that the sensitivity of NBR-packaged hydrophone reaches −170 dB (±2 dB), and the difference is less than 1 dB compared to bare chip. And the frequency band is 50 Hz-4 kHz. The hydrophone also has good directional pattern in the form of an 8-shape, and the pressure-resisting ability is more than 2 MPa.

Originality/value

The packaging structure significantly increases the sensitivity of the hydrophone and broadens the frequency band, providing a new method in the packaging design for MEMS hydrophone.

Details

Sensor Review, vol. 35 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 September 2021

Hoda Sabry Othman, Salwa H. El-Sabbagh and Galal A. Nawwar

In continuation to the previous work on copper (lignin/silica/fatty acids) (Cu-LSF) complex as a natural antioxidant/electrical conductivity agent for nitrile-butadiene rubber (NBR

Abstract

Purpose

In continuation to the previous work on copper (lignin/silica/fatty acids) (Cu-LSF) complex as a natural antioxidant/electrical conductivity agent for nitrile-butadiene rubber (NBR), this study aims to perform further investigations for NBR vulcanizates loaded with different concentrations of Cu-LSF complex, including swelling behavior and hardness properties, as well as evaluating their thermal stability via thermogravimetric analysis.

Design/methodology/approach

The behavior of Cu-LSF complex in NBR matrix was compared with that of the standard commercial antioxidants (2,2,4-trimethyl-1,2-dihydroquinoline/N-isopropyl-N′-phenyl-p-phenylenediamine [TMQ/IPPD]).

Findings

Results revealed that Cu-LSF complex can act as an effective reinforcing and hardening agent, with exhibiting fluid resistance, even when compared with the commercial antioxidants. In comparison with the previous studies on its Zn and Ca analogues and their behavior in different rubber matrixes, Cu-LSF complex showed higher values of hardness and less susceptibility for swelling, respectively. Moreover, Cu-LSF antioxidant activity becomes in accordance with the previous work.

Originality/value

The new Cu-LSF complex could be used as a green alternative to the commercial antioxidants (TMQ/IPPD) with introducing further advantages to the rubber matrix, such as hardening, fluid resistance and thermal stability.

Details

Pigment & Resin Technology, vol. 51 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 August 2020

Wei Feng, Lei Yin, Yanfeng Han, Jiaxu Wang, Ke Xiao and Junyang Li

This paper aims to explore the possibility of converting the nitrile butadiene rubber (NBR) water-lubricated bearing material into a self-lubricating bearing material by the…

Abstract

Purpose

This paper aims to explore the possibility of converting the nitrile butadiene rubber (NBR) water-lubricated bearing material into a self-lubricating bearing material by the action of polytetrafluoroethylene (PTFE) particles and water lubrication.

Design/methodology/approach

A group of experimental studies was carried out on a ring-on-block friction test. The physical properties, tribological properties and interface structure of PTFE-NBR self-lubricating composites filled with different percentages of PTFE particles were investigated.

Findings

The experimental results indicated that the reduction in friction and wear is a result of the formation of the lubricating film on the surface of the composites. The lubricating film was formed of a large amount of PTFE particles continuously supplied under water lubrication conditions and the PTFE particles here can greatly enhance the load capacity and lubrication performance.

Originality/value

In this study, the tribological properties of PTFE particles added to the NBR water-lubricated bearing materials under water lubrication were investigated experimentally, and the research was carried out by a ring-on-block friction test. It is believed that this study can provide some guidance for the application of PTFE-NBR self-lubricating.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2020-0187/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 August 2020

Salwa H. El-Sabbagh, Nivin M. Ahmed, Doaa Samir Mahmoud and Wael S. Mohamed

The purpose of this paper is to evaluate the efficiency of commercial silica, silica fume-waste (SF) and modified silica fume-waste (mSF) as reinforcing filler in…

Abstract

Purpose

The purpose of this paper is to evaluate the efficiency of commercial silica, silica fume-waste (SF) and modified silica fume-waste (mSF) as reinforcing filler in acrylonitrile-butadiene rubber (NBR) and ethylene propylene diene monomer (EPDM) through the mixing process of rubber. The composites were prepared using different loadings of silica fume and commercial silica in EPDM and NBR composites. Structural characterization of silica and SF was done using X-ray fluorescence and scanning electron microscopy (SEM). The surface of silica fume waste was modified using poly methyl methacrylate/butyl acrylate through emulsion polymerization to increase the interaction between silica and rubber, then consequently better dispersion in rubber matrix was obtained. The mSF waste was characterized using FT-IR spectra and transmission electron microscopy.

Design/methodology/approach

The investigated rubber mixes and vulcanizates were evaluated by measuring the curing characteristics, mechanical testing, thermogravimetric analysis and morphological studies (SEM). The mechanical properties of composites including tensile strength, elongation at break and modulus were estimated and analyzed.

Findings

The results revealed that the composites (NBR and EPDM) containing mSF as filler exhibited better rheological and mechanical properties compared to unmodified silica waste and commercial silica. The SEM analysis indicated that the mSF was homogeneously dispersed through the surface of NBR and EPDM composites. Also, results showed that (NBR and EPDM) composites exhibited remarkable improvements in tensile strength, elongation at break and hardness in the presence of mSF; they also showed an increase in the thermal stability. This means that the treatment of surface SF can improve its dispersion in rubber.

Research limitations/implications

Silica cannot be applied in rubber matrix without surface modification because of their incompatibility; their dispersion is not good without surface modification.

Practical implications

The modified silica surface is considered as effective reinforcing filler which can replace other fillers because of its lower surface energy and enhanced intercalating behavior in rubber.

Social implications

This study is just a start in establishing rubber projects with wide applications in the industry and providing a cheap local product while preserving the quality and that is the use of factory waste, which helps in protecting the environment from pollution.

Originality/value

mSF is cheap with relatively high purity, which make rubber/mSF composites appear as new grade of material that can be used in different media rather than rubber.

Details

Pigment & Resin Technology, vol. 50 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 May 2023

Renato Silva Nicoletti, Tawan Oliveira, Alex Sander Clemente de Souza and Silvana De Nardin

In the analysis of structures in a fire situation by simplified and analytical methods, one assumption is that the fire resistance time is greater than or equal to the required…

Abstract

Purpose

In the analysis of structures in a fire situation by simplified and analytical methods, one assumption is that the fire resistance time is greater than or equal to the required fire resistance time. Among the methodologies involving the fire resistance time, the most used is the tabular method, which associates fire resistance time values to structural elements based on minimum dimensions of the cross section. The tabular method is widely accepted by the technical-scientific community due to the fact that it is safe and practical. However, its main criticism is that it results in lower fire resistance times than advanced thermal and thermostructural analysis methods. The objective of this study was to evaluate the fire resistance time of reinforced concrete beams and compare it with the required fire resistance time recommended by the tabular method of NBR 15200 (ABNT, 2012).

Design/methodology/approach

The fire resistance time and required fire resistance time of reinforced concrete beams were evaluated using, respectively, numerical models developed based on the finite element method and the tabular method of NBR 15200 (ABNT, 2012). The influence of the following parameters was investigated: longitudinal reinforcement cover, characteristic compressive strength of concrete, beam height, longitudinal reinforcement area and arrangement of steel bars.

Findings

Among the evaluated parameters, the covering of the longitudinal reinforcement proved to be more relevant for the fire resistance time, justifying that the tabular method of NBR 15200 (ABNT, 2012) being strongly and directly influenced by this parameter. In turn, more resistant concretes, higher beams and higher steel grades have lower fire resistance time values. This is because beams in these conditions have greater resistance capacity at room temperature and, consequently, are subject to external stresses of greater magnitude. In some cases, the fire resistance time was even lower than the required fire resistance time prescribed by NBR 15200 (ABNT, 2012). Both the fire resistance time and the required fire resistance time were not influenced by the arrangement of the longitudinal reinforcements.

Originality/value

The present paper innovates by demonstrating the influence of other important design variables on the required fire resistance time of the NBR 15200 (ABNT, 2012). Among several conclusions, it was found that the load level to which the structural elements are subjected considerably affects their fire resistance time. For this reason, it was recommended that the methods for calculating the required fire resistance time consider the load level. In addition, the article quantifies the security degree of the tabular method and exposes some situations for which the tabular method proved to be unsafe. Moreover, in all the models analyzed, the relationship between the span and the vertical deflection associated with the failure of the beams in a fire situation was determined. With this, a span over average deflection relationship was presented in which beams in fire situations fail.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 455