Search results

1 – 10 of 83
Article
Publication date: 10 August 2023

Nor Salwani Hashim, Fatimah De’nan and Norbaya Omar

Basically, connections are used to transfer the force supported by structural members to other parts of the structure. The flush end-plate bolted beam to column connection is one…

Abstract

Purpose

Basically, connections are used to transfer the force supported by structural members to other parts of the structure. The flush end-plate bolted beam to column connection is one type that has been widely used because of its simplicity in fabrication and rapid site erection. The purpose of this study is to determine the moment-rotation curve, moment of resistance (MR) and mode of failure, and the results were compared with existing results for normal flat web connections.

Design/methodology/approach

In this study, the connection modeled was the flush end-plate welded with triangular web profile (TriWP) steel beam section and then bolted to a UKC column flange. The bolted flush end-plate semi-rigid beam to column connection was modeled using finite element software. The specimen was modeled using LUSAS 14.3 finite element software, with dimensions and parameters of the finite element model sizes being 200 × 200 × 49.9 UKC, 200 × 100 × 17.8 UKB and 200 × 100 with a thickness of 20 mm for the endplate.

Findings

It can be concluded that the MR obtained from the TriWP steel beam section is different from that of the normal flat web steel beam by 28%. The value of MR for the TriWP beam section is lower than that of the normal flat web beam section, but the moment ultimate is higher by 21% than the normal flat web. Therefore, it can be concluded that the TriWP section can resist more acting force than the normal flat web section and is suitable to be used as a new proposed shape to replace the normal flat web section for a certain steel structure based on the end-plate connection behavior.

Originality/value

As a result, the TriWP section has better performance than the flat web section in resisting MR behavior.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 September 2023

Nor Salwani Hashim, Fatimah De’nan and Nurfarhah Naaim

Nowadays, residential buildings have become increasingly important due to the growing communities. The purpose of this study is to investigate the behavior of a steel structural…

Abstract

Purpose

Nowadays, residential buildings have become increasingly important due to the growing communities. The purpose of this study is to investigate the behavior of a steel structural framing system that incorporates lightweight load-bearing walls and slabs, and to compare the weight of materials used in cold-formed and hot-finished steel structural systems for affordable housing.

Design/methodology/approach

Four types of models consisting of 243 members were simulated. Model 1 is a cold-formed steel structural framing system, while Model 2 is a hot-finished steel structural framing system. Both Models 1 and 2 use lightweight wall panels and lightweight composite slabs. Models 3 and 4 are made with brick walls and precast reinforced concrete systems, respectively. These structures use different wall and slab materials, namely, brick walls and precast reinforced concrete. The analysis includes bending behavior, buckling resistance, shear resistance and torsional rotation analysis.

Findings

This study found that using thinner steel sections can increase the deflection value. Meanwhile, increasing member length and the ratio of slenderness will decrease buckling resistance. As the applied load increases, buckling deformation also increases. Furthermore, decreasing shear area causes a reduction in shear resistance. Thicker sections and the use of lightweight materials can decrease the torsional rotation value.

Originality/value

The weight comparison of the steel structures shows that Model 1, which is a cold-formed steel structure with lightweight wall panels and lightweight composite slabs, is the most suitable model due to its lightweight and affordability for housing. This model can also be used as a reference for the optimal design of modular structural framing using cold-formed steel materials in the field of civil engineering and as a promotional tool.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 August 2023

Nor Salwani Hashim and Fatimah De'nan

Castellated and cellular beams achieved the same strength as solid I-beams with the same depth, resulting in significantly lighter and more economical structures. The purpose of…

Abstract

Purpose

Castellated and cellular beams achieved the same strength as solid I-beams with the same depth, resulting in significantly lighter and more economical structures. The purpose of this study is to analyse the bending behaviour of I-beam steel sections with certain web openings by finite element analysis.

Design/methodology/approach

The accuracy of finite element results allows extensive numerical analysis of sections with web openings, concentrating on the web opening sizes and web opening positions. These assumptions can increase the induced section load with various shapes of web opening depth and web opening shapes of c-hexagon, hexagon, octagon, circular and square. This also includes spacing distances, with a 50-mm edge and 150-mm centre-to-centre distance and a section with a 100-mm edge and 200-mm centre-to-centre distance. Generally, the adjustment of the opening geometry (by reducing the angle of web pitch or reducing the opening depth depending on analysed parameters) may influence the bending behaviour.

Findings

Additionally, Model 2 was found to be the optimum model compared to Model 1, mainly in terms of bending. Moreover, the I-beam with a c-hexagon shape opening exhibited the lowest displacement compared to other sections with other web opening shapes. Section with a different arrangement of web opening, Type E shows the lower displacement while higher displacement is observed for Type A and also higher displacement considered for Type G. The optimum model is associated with Type E, followed by Type D, compared to other types of certain web opening and I-beam.

Originality/value

The use of sections with different arrangements of web opening improved the performance of the perforated section in terms of structural behaviour, compared to typical I-beam, thus leading to economic design.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 July 2023

Fatimah De’nan, Chong Shek Wai and Nor Salwani Hashim

Various designs of corrugated webs include trapezoidal, sinusoidal, triangular and rectangular profiles. The increasing use of curved plates has prompted the creation of…

Abstract

Purpose

Various designs of corrugated webs include trapezoidal, sinusoidal, triangular and rectangular profiles. The increasing use of curved plates has prompted the creation of I-sections made of steel with a corrugated web design. This study aims to examine the effectiveness of an I-beam steel section that features a perforated-triangular web profile.

Design/methodology/approach

In the current study, finite element analysis was conducted on corrugated-perforated steel I-sections using ANSYS software. The study focused on inspecting the design of the perforations, including their shape (circle, square, hexagon, diamond and octagon), size of perforations (80 mm, 100 mm and 120 mm) and layout (the position of web perforation), as well as examining the geometric properties of the section in term of bending, lateral torsional buckling, torsion and shear behavior.

Findings

The study revealed that perforations with diamond, circle and hexagon shapes exhibit good performance, whereas the square shape performs poorly. Moreover, the steel section’s performance decreases with an increase in perforation size, regardless of loading conditions. In addition, the shape of the web perforations can also influence its stress distribution. For example, diamond-shaped perforations have been found to perform better than square-shaped perforations in terms of stress distribution and overall performance. This was because of their ability to distribute stress more evenly and provide greater support to the surrounding material. The diagonal alignment of the diamond shape aligns with principal stress directions, allowing for efficient load transfer and reduced stress concentrations. Additionally, diamond-shaped perforations offer a larger effective area, better shear transfer and improved strain redistribution, resulting in enhanced structural integrity and increased load-carrying capacity.

Originality/value

Hence, the presence of lateral-torsional buckling and torsional loading conditions significantly impacts the performance of corrugated-perforated steel I-sections.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 July 2023

Mehdi Ranjbar-Roeintan

The purpose of this study is to investigate the strain rate effect on the problem of low-velocity impact (LVI) on a beam, including silicon nitride and stainless steel materials.

Abstract

Purpose

The purpose of this study is to investigate the strain rate effect on the problem of low-velocity impact (LVI) on a beam, including silicon nitride and stainless steel materials.

Design/methodology/approach

Based on the nonlinear Hertz impact mechanism, the energies related to the impactor and the beam are written, and motion equations are derived using the Lagrangian mechanics and Ritz method. The strain rate term is represented as a damping matrix in the equations of motion. In the issue of LVI on the silicon nitride and stainless steel beam, the effect of internal viscous damping coefficient in simply–simply and clamped–free boundary conditions are studied. Also, the influence of the volume fraction index in the range between zero and one and greater than one on the impact response is investigated.

Findings

The results make it clear that the strain rate parameter had little effect on the response in LVI. Also, an increase in the volume fraction index has led to a decrease in the contact force and an increase in the rebound velocity of the impactor.

Originality/value

The effect of strain rate on LVI is theoretically studied in this paper, while in most of the papers, this effect is investigated experimentally and numerically.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 July 2024

Aneel Manan, Pu Zhang, Shoaib Ahmad and Jawad Ahmad

The purpose of this study is to assess the incorporation of fiber reinforced polymer (FRP) bars in concrete as a reinforcement enhances the corrosion resistance in a concrete…

Abstract

Purpose

The purpose of this study is to assess the incorporation of fiber reinforced polymer (FRP) bars in concrete as a reinforcement enhances the corrosion resistance in a concrete structure. However, FRP bars are not practically used due to a lack of standard codes. Various codes, including ACI-440-17 and CSA S806-12, have been established to provide guidelines for the incorporation of FRP bars in concrete as reinforcement. The application of these codes may result in over-reinforcement. Therefore, this research presents the use of a machine learning approach to predict the accurate flexural strength of the FRP beams with the use of 408 experimental results.

Design/methodology/approach

In this research, the input parameters are the width of the beam, effective depth of the beam, concrete compressive strength, FRP bar elastic modulus and FRP bar tensile strength. Three machine learning algorithms, namely, gene expression programming, multi-expression programming and artificial neural networks, are developed. The accuracy of the developed models was judged by R2, root means squared and mean absolute error. Finally, the study conducts prismatic analysis by considering different parameters. including depth and percentage of bottom reinforcement.

Findings

The artificial neural networks model result is the most accurate prediction (99%), with the lowest root mean squared error (2.66) and lowest mean absolute error (1.38). In addition, the result of SHapley Additive exPlanation analysis depicts that the effective depth and percentage of bottom reinforcement are the most influential parameters of FRP bars reinforced concrete beam. Therefore, the findings recommend that special attention should be given to the effective depth and percentage of bottom reinforcement.

Originality/value

Previous studies revealed that the flexural strength of concrete beams reinforced with FRP bars is significantly influenced by factors such as beam width, effective depth, concrete compressive strength, FRP bars’ elastic modulus and FRP bar tensile strength. Therefore, a substantial database comprising 408 experimental results considered for these parameters was compiled, and a simple and reliable model was proposed. The model developed in this research was compared with traditional codes, and it can be noted that the model developed in this study is much more accurate than the traditional codes.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 10 November 2023

Varun Sabu Sam, M.S. Adarsh, Garry Robson Lyngdoh, Garry Wegara K. Marak, N. Anand, Khalifa Al-Jabri and Diana Andrushia

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical…

Abstract

Purpose

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical properties of steel under fire conditions. It is known that structural steel loses strength and stiffness as temperature increases, particularly above 400 °C. The duration of time in which steel is exposed to high temperatures also has an impact on how much strength it loses. The time-dependent response of steel is critical when estimating load carrying capacity of steel columns exposed to fire. Thus, investigating the structural response of cold-formed steel (CFS) columns is gaining more interest due to the nature of such structural elements.

Design/methodology/approach

In this study, experiments were conducted on two CFS configurations: back-to-back (B-B) channel and toe-to-toe (T-T) channel sections. All CFS column specimens were exposed to different temperatures following the standard fire curve and cooled by air or water. A total of 14 tests were conducted to evaluate the capacity of the CFS sections. The axial resistance and yield deformation were noted for both section types at elevated temperatures. The CFS column sections were modelled to simulate the section's behaviour under various temperature exposures using the general-purpose finite element (FE) program ABAQUS. The results from FE modelling agreed well with the experimental results. Ultimate load of experiment and finite element model (FEM) are compared with each other. The difference in percentage and ratio between both are presented.

Findings

The results showed that B-B configuration showed better performance for all the investigated parameters than T-T sections. A noticeable loss in the ultimate strength of 34.5 and 65.6% was observed at 90 min (986℃) for B-B specimens cooled using air and water, respectively. However, the reduction was 29.9 and 46% in the T-T configuration, respectively.

Originality/value

This research paper focusses on assessing the buckling strength of heated CFS sections to analyse the mode of failure of CFS sections with B-B and T-T design configurations under the effect of elevated temperature.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 14 August 2024

Ibrahim M.H. Alshaikh, Aref A. Abadel, Moncef L. Nehdi and Ahmed Hamoda

Evaluate the performance of progressive collapse of full-scale three-dimensional structure (3D) beam-slab substructures with and without the presence of reinforced concrete (RC…

Abstract

Purpose

Evaluate the performance of progressive collapse of full-scale three-dimensional structure (3D) beam-slab substructures with and without the presence of reinforced concrete (RC) balconies using two concrete mixes [normal concrete (NC) and rubberized concrete (RuC)].

Design/methodology/approach

This study examines two concrete mixes to evaluate the progressive collapse performance of full-scale 3D beam-slab substructures with and without the presence of RC balconies using the finite element (FE) method.

Findings

The results showed that the vertical loads that affect the structures of the specimens after including the balconies in the modeling increased by an average of 29.3% compared with those of the specimens without balconies. The specimens with balconies exhibited higher resistance to progressive collapse in comparison with the specimens without balconies. Moreover, the RuC specimens performed very efficiently during the catenary stage, which significantly enhanced robustness to substantial deformation to delay or mitigate the progressive collapse risk.

Originality/value

All the experimental and numerical studies of the RC beam-slab substructures under progressive collapse scenarios are limited and do not consider the balcony’s presence in the building. Although balconies represent a common feature of multistory residential buildings, their presence in the building has more likely caused the failure of this building compared with a building without balconies. However, balconies are an external extension of RC slabs, which can provide extra resistance through tensile membrane action (TMA) or compressive membrane action (CMA). All those gaps have not been investigated yet.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Abstract

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 5
Type: Research Article
ISSN: 1573-6105

Article
Publication date: 13 September 2024

Ahmad Honarjoo, Ehsan Darvishan, Hassan Rezazadeh and Amir Homayoon Kosarieh

This article introduces SigBERT, a novel approach that fine-tunes bidirectional encoder representations from transformers (BERT) for the purpose of distinguishing between intact…

Abstract

Purpose

This article introduces SigBERT, a novel approach that fine-tunes bidirectional encoder representations from transformers (BERT) for the purpose of distinguishing between intact and impaired structures by analyzing vibration signals. Structural health monitoring (SHM) systems are crucial for identifying and locating damage in civil engineering structures. The proposed method aims to improve upon existing methods in terms of cost-effectiveness, accuracy and operational reliability.

Design/methodology/approach

SigBERT employs a fine-tuning process on the BERT model, leveraging its capabilities to effectively analyze time-series data from vibration signals to detect structural damage. This study compares SigBERT's performance with baseline models to demonstrate its superior accuracy and efficiency.

Findings

The experimental results, obtained through the Qatar University grandstand simulator, show that SigBERT outperforms existing models in terms of damage detection accuracy. The method is capable of handling environmental fluctuations and offers high reliability for non-destructive monitoring of structural health. The study mentions the quantifiable results of the study, such as achieving a 99% accuracy rate and an F-1 score of 0.99, to underline the effectiveness of the proposed model.

Originality/value

SigBERT presents a significant advancement in SHM by integrating deep learning with a robust transformer model. The method offers improved performance in both computational efficiency and diagnostic accuracy, making it suitable for real-world operational environments.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 83