Search results

1 – 10 of 87
Article
Publication date: 3 November 2022

Leilei Fan, Zhilin Sun, Wuyi Wan and Yunze Shen

To modify a conventional evacuated tube, an improved asymmetric U-type evacuated tube (AUET) is proposed. This study aims to investigate the thermal and hydrodynamic performances…

Abstract

Purpose

To modify a conventional evacuated tube, an improved asymmetric U-type evacuated tube (AUET) is proposed. This study aims to investigate the thermal and hydrodynamic performances of a modified tube and determine the optimal structural form.

Design/methodology/approach

Based on the variation of fluid proprieties with temperature, the formulated numerical model was validated and then deployed to investigate the natural circulation in the evacuated tubes. A dimensionless number was proposed to quantify the stratification effect. The influence of the degree of asymmetry of U-type evacuated tubes on the flow patterns, mass flow rate, temperature distribution, thermal stratification and energy conversion efficiency was studied.

Findings

When the degree of asymmetry is large, a higher velocity and better thermal stratification are achieved, thereby avoiding stagnant water at the bottom of the tubes simultaneously. Compared with the conventional evacuated tube, the improved evacuated tube exhibited a higher thermal efficiency.

Originality/value

The originally proposed AUET was proven to have better performance in avoiding stagnant water, reducing fluid mixing and improving the heat transfer efficiency.

Article
Publication date: 1 August 2005

M.A. Alghoul, M.Y. Sulaiman, B.Z. Azmi and M.Abd. Wahab

To cover the main contributions and developments in solar thermal collectors through focusing on materials, heat transfer characteristics and manufacturing challenges.

4625

Abstract

Purpose

To cover the main contributions and developments in solar thermal collectors through focusing on materials, heat transfer characteristics and manufacturing challenges.

Design/methodology/approach

A range of published papers and internet research including research work on various solar thermal collectors (flat plate, evacuated tubes, and heat pipe tube) were used. Evaluation of solar collectors performance is critiqued to aid solar technologies make the transition into a specific dominant solar collector. The sources are sorted into sections: finding an academic job, general advice, teaching, research and publishing, tenure and organizations.

Findings

Provides information about types of solar thermal collectors, indicating what can be added by using evacuated tube collectors instead of flat plate collectors and what can be added by using heat pipe collectors instead of evacuated tubes.

Research limitations/implications

Focusing only on three types of solar thermal collectors (flat plate, evacuated tubes, and heat pipe tube).

Practical implications

Useful source of information for consultancy and impartial advice for graduate students planning to do research in solar thermal technologies.

Originality/value

This paper fulfils identified information about materials and heat transfer properties of materials and manufacturing challenges of these three solar thermal collectors.

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 April 2024

Garima Nema and Karunamurthy K.

This study aims to provide an alternative adoption to overcome the energy crisis and environmental effluence by comparative theoretical and trial testing analysis of an innovative…

Abstract

Purpose

This study aims to provide an alternative adoption to overcome the energy crisis and environmental effluence by comparative theoretical and trial testing analysis of an innovative combined condenser unit over traditional individual condenser unit water heating systems.

Design/methodology/approach

The presented innovative new unit of the combined condenser heat pipe works efficiently through its improved idea and unique design, providing uniform heating to improve the heat transfer and, finally, the temperature of water increases without enhancing the cost. In this design, all these five evaporator units were connected with a single combined condenser unit in such a manner that after the condensation of heat transfer fluid vapour, it goes equally into the evaporator pipe.

Findings

The maximum temperature of hot water obtained from the combined condenser heating system was 60.6, 55.5 and 50.3°C at a water flow rate of 0.001, 0.002 and 0.003 kg/s, respectively. The first and second law thermodynamic efficiency of the combined condenser heating system were 55.4%, 60.5% and 89.0% and 2.6%, 3.7% and 4.1% at 0.001, 0.002 and 0.003 kg/s of water flow rates, respectively. The combined condenser heat pipe solar evacuated tube heating system promoting progressive performance is considered efficient and environment-friendly compared to the traditional condenser unit water heating system.

Originality/value

Innovative combined condenser heat pipe evacuated tube collector assembly was designed and developed for the study. A comparative theoretical and experimental energy-exergy performance analysis was performed of innovated collective condenser and traditional individual condenser heat pipe water heating system at various mass flow rate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 January 2016

Chunyu Zhao, Shijun You, Hao Gao and Wei Yu

The purpose of this paper is to use numerical simulations to investigate the energy conversion performance and the flow and temperature structures inside horizontal tubes

Abstract

Purpose

The purpose of this paper is to use numerical simulations to investigate the energy conversion performance and the flow and temperature structures inside horizontal tubes connected to a vertical manifold channel.

Design/methodology/approach

The simulations are performed for different flow rates and inlet temperatures using CFD.

Findings

In both the “flowing wind mode” and “upwind mode,” the inlet velocity is not infinitely small under the influence of natural convection; however, such small inlet velocities cannot be achieved in practice and are of no practical significance. In the “flowing wind mode,” the appropriate velocity for achieving high efficiency is 0.01-0.02 m/s. In the “upwind mode,” the appropriate velocity for obtaining high efficiency is 0.1-0.2 m/s. A high inlet temperature can lead to high efficiency; therefore, a large temperature difference and a small flow can be used in actual designs.

Originality/value

The energy conversion performance and flow structures inside evacuated tubular collectors were investigated using CFD for different operating conditions, notably in the “following wind mode” and the “upwind mode.”

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 June 2016

Rupeshkumar V. Ramani, Bharat M. Ramani, Anjana D. Saparia, Nikesh A. Shah, Pinank Kacha and J.H. Markna

In the twenty-first century, the use of fossil fuels has increased drastically because the necessity of energy is increasing day by day which affects the world’s economy. The solar

Abstract

Purpose

In the twenty-first century, the use of fossil fuels has increased drastically because the necessity of energy is increasing day by day which affects the world’s economy. The solar energy (photo-thermal energy conversion) system is the most economical and eco-friendly alternative source. To increase the use of domestic as well as commercialization purpose, the authors have reviewed this paper on the solar water heater along with its structural mechanism for energy enhancement and to create easier stair steps for climbing on the green world dream.

Design/methodology/approach

In this study, nanotechnology has remarkably built its own use for extending thermal efficiency by using some gradual experiments. It is a phenomenon, like nanofluid (as a working fluid for a direct solar collector), nanocoating (on the surface of a solar-evacuated tube by using the chemical vapor deposition/physical vacuum deposition/sol–gel technique) and nanorod-based solar collector tube.

Findings

This invention gives greater efficiency rather than the conventional systems, but also this advancement is not too much supported in a low- temperature environment also, we can consider the poor light absorption characteristics of the pure water (Bencic, et al., 2000).

Originality/value

The basic idea and understanding of this phenomenon to improve solar collecting performance for obtaining a high working-fluid temperature are discussed in this paper.

Details

World Journal of Engineering, vol. 13 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 August 2019

Ab Kasaeian, Reza Daneshazarian, Fathollah Pourfayaz, Sahar Babaei, Mojgan Sheikhpour and Shima Nakhjavani

Because of its increased absorptance in fluid and reduced heat loss, direct absorption nanofluid (DANF) is receiving intense interest as an efficient way to harvest solar energy…

Abstract

Purpose

Because of its increased absorptance in fluid and reduced heat loss, direct absorption nanofluid (DANF) is receiving intense interest as an efficient way to harvest solar energy. This work aims to investigate, for the first time, the application of DANF in parabolic trough collectors (PTC), a promising collector for solar thermal systems.

Design/methodology/approach

A representative flow and heat transfer study of different fluids in a straight tube is conducted, and the basic energy equation and radiative transfer equations are numerically solved to obtain the fluid temperature distribution and energy conversion efficiency. Ethylene glycol (EG) and different concentrations of (i.e., 0.1-0.6 per cent) multi-wall carbon nanotubes (MWCNT) in EG are used as sample fluids. Four cases are studied for a traditional PTC (i.e., using metal tube) and a direct absorption PTC (i.e., using transparent tube) including a bare tube, a tube with an air-filled glass envelope and a tube with vacuumed glass envelop. The numerical results are verified by an experimental study using a copper-glass absorber tube, which reveals the good potential of DANFs.

Findings

Compared with a conventional PTC, using DANF shows an increase of 8.6 per cent and 6.5 K, respectively, in thermal efficiency and outlet temperature difference at a volume fraction (0.5 per cent) of nanoparticles. The results also show that the improvement in solar efficiency increases with increasing particle concentrations, and the vacuum insulated case has the highest efficiency.

Originality/value

In all previous studies, an important section was missing as the effect of photons on the direct solar absorption trough collector, which is considered in this study. This paper proposes a new concept of using direct solar absorption nanofluids for concentrated solar collectors and analyzes the performance of both absorptance and transmittance efficiency considerations. To reveal the potential of the new concept, an analytical model based on energy balance is developed, and two case studies are performed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 5 June 2023

Sonali A. Deshmukh, Praveen Barmavatu, Mihir Kumar Das, Bukke Kiran Naik, Vineet Singh Sikarwar, Alety Shivakrishna, Radhamanohar Aepuru and Rathod Subash

This study has covered many types of solar-powered air-conditioning systems that may be used as an alternative to traditional electrically powered air-conditioning systems in…

Abstract

This study has covered many types of solar-powered air-conditioning systems that may be used as an alternative to traditional electrically powered air-conditioning systems in order to reduce energy usage. Solar adsorption air cooling is a great alternative to traditional vapor compression air-conditioning. Solar adsorption has several advantages over traditional vapor-compression systems, including being a green cooling technology which uses solar energy to drive the cycle, using pure water as an eco-friendly HFC-free refrigerant, and being mechanically simple with only the magnetic valves as moving parts. Several advancements and breakthroughs have been developed in the area of solar adsorption air-conditioners during the previous decade. However, further study is required before this technology can be put into practise. As a result, this book chapter highlights current research that adds to the understanding of solar adsorption air-conditioning technologies, with a focus on practical research. These systems have the potential to become the next iteration of air-conditioning systems, with the benefit of lowering energy usage while using plentiful solar energy supplies to supply the cooling demand.

Article
Publication date: 4 September 2018

Evangelos Bellos, Ilias Daniil and Christos Tzivanidis

The purpose of this paper is to investigate a cylindrical flow insert for a parabolic trough solar collector. Centrally placed and eccentric placed inserts are investigated in a…

Abstract

Purpose

The purpose of this paper is to investigate a cylindrical flow insert for a parabolic trough solar collector. Centrally placed and eccentric placed inserts are investigated in a systematic way to determine which configuration leads to the maximum thermal enhancement.

Design/methodology/approach

The analysis is performed in SolidWorks Flow Simulation with a validated computational fluid dynamics model. Moreover, the useful heat production and the pumping work demand increase are evaluated using the exergy and the overall efficiency criteria. The different scenarios are compared for inlet temperature of 600 K, flow rate of 100 L/min and Syltherm 800 as the working fluid. Moreover, the inlet temperature is examined from 450 to 650 K, and the diameter of the insert is investigated up to 50 mm.

Findings

According to the final results, the use of a cylindrical insert of 30 mm diameter is the most sustainable choice which leads to 0.56 per cent thermal efficiency enhancement. This insert was examined in various eccentric positions, and it is found that the optimum location is 10 mm over the initial position in the vertical direction. The thermal enhancement, in this case, is about 0.69 per cent. The pumping work demand was increased about three times with the insert of 30 mm, but the absolute values of this parameter are too low compared to the useful heat production. So, it is proved that the increase in the pumping work is not able to eliminate the useful heat production increase. Moreover, the thermal enhancement is found to be greater at higher temperature levels and can reach up to 1 per cent for an inlet temperature of r650 K.

Originality/value

The present work is a systematic investigation of the cylindrical flow insert in a parabolic trough collector. Different diameters of this insert, as well as different positions in two dimensions, are examined using a parametrization of angle-radius. To the authors’ knowledge, there is no other study in the literature that investigates the presented many cases systematically with the followed methodology on parabolic trough collectors. Moreover, the results of this work are evaluated with various criteria (thermal, exergy and overall efficiency), something which is not found in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2022

Naveenkumar R., Shanmugam S. and Veerappan AR

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar

Abstract

Purpose

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar still (DSSS).

Design/methodology/approach

Modified single basin DSSS integrated with solar operated vacuum fan and external water cooled condenser was fabricated using aluminium material. During sunny season, experimental investigations have been performed in both conventional and modified DSSS at a basin water depth of 3, 6, 9 and 12 cm. Production rate and cumulative distillate yield obtained in traditional and developed DSSS at different water depths were compared and best water depth to attain the maximum productivity and cumulative distillate yield was found out.

Findings

Results indicated that both traditional and modified double SS produced maximum yield at the minimum water depth of 3 cm. Cumulative distillate yield of the developed SS was 16.39%, 18.86%, 15.22% and 17.07% higher than traditional at water depths of 3, 6, 9 and 12 cm, respectively. Cumulative distillate yield of the developed SS at 3 cm water depth was 73.17% higher than that of the traditional SS at 12 cm depth.

Originality/value

Performance evaluation of DSSS at various water depths by integrating the combined solar operated Vacuum fan and external Condenser.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 July 2021

Ömer Akbal, Hakan F. Öztop and Nidal H. Abu-Hamdeh

The purpose of this paper is to make a three-dimensional computational analysis of melting in corrugated pipe inserted system filled with phase change material (PCM). The system…

Abstract

Purpose

The purpose of this paper is to make a three-dimensional computational analysis of melting in corrugated pipe inserted system filled with phase change material (PCM). The system was heated from the inner pipe, and temperature of the outer pipe was lower than that of inner pipe. Different geometrical ratio cases and two different temperature differences were tested for their effect on melting time.

Design/methodology/approach

A computational analysis through a pipe with corrugated pipe filled with PCM is analyzed. Finite volume method was applied with the SIMPLE algorithm method to solve the governing equations.

Findings

The results indicate that the geometrical parameters can be used to control the melting time inside the heat exchanger which, in turn, affect the energy efficiency. The fastest melting time is seen in Case 4 at the same temperature difference which is the major observation of the current work.

Originality/value

Originality of this work is to perform a three-dimensional analysis of melting of PCM in a corrugated pipe inserted pipe.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 87