Search results

1 – 10 of 749
Article
Publication date: 1 February 2004

Ying Bo‐an, Kwok Yi‐Lin, Li Yi, Yeung Chap‐Yung and Song Qing‐wen

By analysing the physical mechanisms of heat and moisture transfer through textiles with PCM and carrying out the test of thermal regulating functional performance of PCM garment…

1115

Abstract

By analysing the physical mechanisms of heat and moisture transfer through textiles with PCM and carrying out the test of thermal regulating functional performance of PCM garment in climate chamber, the thermal regulating functional performance of PCM garments have been analysed and discussed in this paper. Both numerical solution and experimental results show that during the phase change process the rate of temperature rise of garment with higher PCM add‐on level was lower than that with less PCM. From theoretical analysis and experiment curve, the parameter of k was proposed and discussed, which is used to represent the rate of temperature change and the thermal regulating functional performance of PCM garments. It has been demonstrated that the higher the PCM add‐on level contained in the garment, the lower is the value of k, and slower the temperature raised in the garment, the higher is the effect of thermal regulating.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 1/2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 March 2024

Hakan F. Oztop, Burak Kiyak and Ishak Gökhan Aksoy

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store…

Abstract

Purpose

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store energy. This approach is intended to offer novel insights into enhancing thermal energy storage systems, particularly for applications where heat transfer efficiency and energy storage are critical.

Design/methodology/approach

The research involved an experimental and numerical analysis of PCM with a melting temperature range of 22 °C–26°C under various conditions. Three different jet angles (45°, 90° and 135°) and two container angles (45° and 90°) were tested. Additionally, two different Reynolds numbers (2,235 and 4,470) were used to explore the effects of jet outlet velocities on PCM melting behaviour. The study used a circular container and analysed the melting process using the hot air inclined jet impingement (HAIJI) method.

Findings

The obtained results showed that the average temperature for the last time step at Ф = 90° and Re = 4,470 is 6.26% higher for Ф = 135° and 14.23% higher for Ф = 90° compared with the 45° jet angle. It is also observed that the jet angle, especially for Ф = 90°, is a much more important factor in energy storage than the Reynolds number. In other words, the jet angle can be used as a passive control parameter for energy storage.

Originality/value

This study offers a novel perspective on the effective storage of waste heat transferred with air, such as exhaust gases. It provides valuable insights into the role of jet inclination angles and Reynolds numbers in optimizing the melting and energy storage performance of PCMs, which can be crucial for enhancing the efficiency of thermal energy storage systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 January 2024

Burak Kiyak, Hakan Fehmi Oztop and Ishak Gökhan Aksoy

The purpose of this study is to examine the effects of inclination angle on the thermal energy storage capability of a phase change material (PCM) within a disc-shaped container…

Abstract

Purpose

The purpose of this study is to examine the effects of inclination angle on the thermal energy storage capability of a phase change material (PCM) within a disc-shaped container. Different container materials are also tested such as plexiglass and aluminium. This study aims to assess the energy storage capacity, melting behaviour and temperature distributions of PCM with a specific melting range (22°C–26°C) for various governing parameters such as inclination angles, aspect ratios (AR) and temperature differences (ΔT) and compare the melting behaviour and energy storage performance of PCM in aluminium containers to those in plexiglass containers.

Design/methodology/approach

A finite volume approach was adopted to evaluate the thermal energy storage capability of PCMs. Five inclination angles ranging from 0° to 180° were considered and the energy storage capacity. Also, the melting behaviour of the PCM and temperature distributions of the container with different materials were tested. Two different AR and ΔT values were chosen as parameters to analyse for their effects on the melting performance of the PCM. Conjugate heat transfer problem is solved to see the effects of conduction mode of heat transfer.

Findings

The results of the study indicate that as AR decreases, the effect of the inclination angles on the energy storage capacity of the PCM decreases. For lower ΔT, the difference between the maximum and minimum stored energies was 20.88% for AR = 0.20, whereas it was 6.85% for AR = 0.15. Furthermore, under the same conditions, the PCM stored 8.02% more energy in plexiglass containers than in aluminium containers.

Originality/value

This study contributes to the understanding of the influence of inclination angle, container material, AR and ΔT on the thermal energy storage capabilities of PCM in a novel designed container. The findings highlight the importance of AR in mitigating the effect of the inclination angle on energy storage capacity. Additionally, comparing aluminium and plexiglass containers provides insights into the effect of container material on the melting behaviour and energy storage properties of PCM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 December 2023

Shian Li, Yuanzhe Cheng, Qiuwan Shen, Chongyang Wang, Chengdong Peng and Guogang Yang

The purpose of this study is to improve the thermal management of lithium-ion batteries. The phase change material (PCM) cooling does not require additional equipment to consume…

Abstract

Purpose

The purpose of this study is to improve the thermal management of lithium-ion batteries. The phase change material (PCM) cooling does not require additional equipment to consume energy. To improve the heat dissipation capacity of batteries, fins are added in the PCM to enhance the heat transfer process.

Design/methodology/approach

Computational fluid dynamics method is used to study the influence of number of vertical fins and ring fins (i.e. 2, 4, 6 and 8 vertical fins, and 2, 3, 4 and 5 ring fins) and the combination of them on the cooling performance.

Findings

The battery maximum temperature can be decreased by the PCM with vertical or ring fins, and it can be further decreased by the combination of them. The PCM with eight vertical fins and five ring fins reduces the battery maximum temperature by 5.21 K. In addition, the temperature and liquid-phase distributions of the battery and PCM are affected by the design of the cooling system.

Practical implications

This work can provide guidelines for the development of new and efficient PCM cooling systems for lithium-ion batteries.

Originality/value

The combination of PCM and fins can be used to reduce the battery maximum temperature and temperature difference.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 July 2018

Kai Yang, Mingli Jiao, Sifan Wang, Yuanyuan Yu, Quan Diao and Jian Cao

The purpose of this paper is to investigate thermoregulation properties of different composite phase change materials (PCMs), which could be used in the high temperature…

Abstract

Purpose

The purpose of this paper is to investigate thermoregulation properties of different composite phase change materials (PCMs), which could be used in the high temperature environmental conditions to protect human body against the extra heat flow.

Design/methodology/approach

Three kinds of composite PCM samples were prepared using the selected pure PCMs, including n-hexadecane, n-octadecane and n-eicosane. The DSC experiment was performed to get the samples’ phase change temperature range and enthalpy. The simulated high temperature experiments were performed using human arms in three different high temperature conditions (40°C, 45°C, 50°C), and the skin temperature variation curves varying with time were obtained. Then a comprehensive index TGP was introduced from the curves and calculated to evaluate the thermoregulation properties of different composite PCM samples comprehensively.

Findings

Results show that the composite PCM samples could provide much help to the high temperature human body. It could decrease the skin temperature quickly in a short time and it will not cause the over-cooling phenomenon. Comparing with other two composite PCM samples, the thermoregulation properties of the n-hexadecane and n-eicosane composite PCM is the best.

Originality/value

Using the n-hexadecane and n-eicosane composite PCM may provide people with better protection against the high temperature conditions, which is significative for the manufacture of functional thermoregulating textiles, garments or equipments.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 June 2019

Huijin Xu, Yan Wang and Xingchao Han

Phase change energy storage is an important solution for overcoming human energy crisis. This study aims to present an evaluation for the thermal performances of a phase change…

Abstract

Purpose

Phase change energy storage is an important solution for overcoming human energy crisis. This study aims to present an evaluation for the thermal performances of a phase change material (PCM) and a PCM–metal foam composite. Effects of pore size, pore density, thermal conductivity of solid structure and mushy region on the thermal storage process are examined.

Design/methodology/approach

In this paper, temperature, flow field and solid–liquid interface of a PCM with or without porous media were theoretically assessed. The influences of basic parameters on the melting process were analyzed. A PCM thermal storage device with a metal foam composite is designed and a thermodynamic analysis for it is conducted. The optimal PCM temperature and the optimal HTF temperature in the metal foam-enhanced thermal storage device are derived.

Findings

The results show that the solid–liquid interface of pure PCM is a line area and that of the mixture PCM is a mushy area. The natural convection in the melting liquid is intensive for a PCM without porous medium. The porous medium weakens the natural convection and makes the temperature field, flow field and solid–liquid interface distribution more homogeneous. The metal foam can greatly improve the heat storage rate of a PCM.

Originality/value

Thermal storage rate of a PCM is compared with that of a PCM–metal foam composite. A thermal analysis is performed on the multi-layered parallel-plate thermal storage device with a PCM embedded in a highly conductive porous medium, and an optimal melting temperature is obtained with the exergy optimization. The heat transfer enhancement with metal foams proved to be necessary for the thermal storage application.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 January 2020

Chaitanya Dosapati and Mohan Jagadeesh Kumar Mandapati

Solar energy applications are limited because of its intermittent and discontinuous availability with respect to time. Hence, solar energy thermal conversion systems need…

167

Abstract

Purpose

Solar energy applications are limited because of its intermittent and discontinuous availability with respect to time. Hence, solar energy thermal conversion systems need integration with thermal storage units (TSUs) to use solar energy in off sunshine hours. This paper aims to perform thermal analysis of a solar air heater (SAH) integrated with a phase change material (PCM)-based TSU to supply hot air during night period.

Design/methodology/approach

An experimental setup with TSU as main component was prepared with SAH at its upward side, food chamber at its downward side as subcomponents. In TSU, paraffin wax was used as thermal energy storage material. Mass flow rate of air considered as an input parameter in the experiment. Two different absorber plates, namely, plane and ribbed absorber plates were used for the experimentation. Each day for a fixed mass flow of air, observations were made during charging and discharging of PCM.

Findings

Nusselt number and convection heat transfer coefficients were analytically calculated by considering flow through TSU as external flow over bank of tubes in a rectangular duct. A temperature drop of around 7-8°C during charging of PCM and temperature rise of around 4-5°C during discharging of PCM was observed from the experimental results. The average practical efficiency of TSU with ribbed absorber plate SAH during charging and discharging of PCM was 22 and 6 per cent, respectively, higher than that of TSU with plane absorber plate SAH.

Research limitations/implications

There are no limitations for research on SAH integrated with TSU. Different PCM including paraffin wax, Glauber’s salt, salt hydrates and water are used for thermal storage. Only limitation is lower efficiency of SAH integrated with TSU because of lower heat transfer coefficients with air as working medium. If it can improve heat transfer coefficients of air then heat transfer rates with these units will be higher.

Practical implications

There are no practical limitations for research on SAH integrated with TSU. Sophisticated instrumentation is needed to measure flow rates, temperatures and pressure variations of air.

Social implications

In poultry farms during night, chicks cannot survive at cold climatic conditions. Hence, hot air should be supplied to poultry farms whenever the atmospheric temperature drops. It is proposed that, in combination with TSUs, heat produced by SAH is stored in day time in the form of either sensible or latent heat and is retrieved to provide hot air in the night times. This will reduce total operating costs in poultry farms.

Originality/value

Conventionally, people are producing hot air by combusting coal in poultry forms. This cost around Rs. 75,000 per month for a batch of 225 to 250 chicks in a poultry form. Hot air could be produced economically during off sunshine hours from SAH integrated with TSU compared to the conventional method of coal burning. Present experimental investigations conducted to fill the literature gap in this area of research and to design a SAH integrated with TSU to produce hot air for poultry forms.

Details

World Journal of Engineering, vol. 17 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 April 2014

Jean Batina, Serge Blancher and Tarik Kouskou

Mathematical and numerical models are developed to study the melting of a Phase Change Material (PCM) inside a 2D cavity. The bottom of the cell is heated at constant and uniform…

Abstract

Purpose

Mathematical and numerical models are developed to study the melting of a Phase Change Material (PCM) inside a 2D cavity. The bottom of the cell is heated at constant and uniform temperature or heat flux, assuming that the rest of the cavity is completely adiabatic. The paper used suitable numerical methods to follow the interface temporal evolution with a good accuracy. The purpose of this paper is to show how the evolution of the latent energy absorbed to melt the PCM depends on the temperature imposed on the lower wall of the cavity.

Design/methodology/approach

The problem is written with non-homogeneous boundary conditions. Momentum and energy equations are numerically solved in space by a spectral collocation method especially oriented to this situation. A Crank-Nicolson scheme permits the resolution in time.

Findings

The results clearly show the evolution of multicellular regime during the process of fusion and the kinetics of phase change depends on the boundary condition imposed on the bottom cell wall. Thus the charge and discharge processes in energy storage cells can be controlled by varying the temperature in the cell PCM. Substantial modifications of the thermal convective heat and mass transfer are highlighted during the transient regime. This model is particularly suitable to follow with a good accuracy the evolution of the solid/liquid interface in the process of storage/release energy.

Research limitations/implications

The time-dependent physical properties that induce non-linear coupled unsteady terms in Navier-Stokes and energy equations are not taken into account in the present model. The present model is actually extended to these coupled situations. This problem requires smoother geometries. One can try to palliate this disadvantage by constructing smoother approximations of non-smooth geometries. The augmentation of polynomials developments orders increases strongly the computing time. When the external heat flux or temperature imposed at the PCM is much greater than the temperature of the PCM fusion, one must choose carefully some data to assume the algorithms convergence.

Practical implications

Among the areas where this work can be used, are: buildings where the PCM are used in insulation and passive cooling; thermal energy storage, the PCM stores energy by changing phase, solid to liquid (fusion); cooling and transport of foodstuffs or pharmaceutical or medical sensitive products, the PCM is used in the food industry, pharmaceutical and medical, to minimize temperature variations of food, drug or sensitive materials; and the textile industry, PCM materials in the textile industry are used in microcapsules placed inside textile fibres. The PCM intervene to regulate heat transfer between the body and the outside.

Originality/value

The paper's originality is reflected in the precision of its results, due to the use of a high-accuracy numerical approximation based on collocation spectral methods, and the choice of Chebyshev polynomials basis in both axial and radial directions.

Article
Publication date: 18 February 2022

Carla Martins Floriano, Valdecy Pereira and Brunno e Souza Rodrigues

Although the multi-criteria technique analytic hierarchy process (AHP) has successfully been applied in many areas, either selecting or ranking alternatives or to derive priority…

Abstract

Purpose

Although the multi-criteria technique analytic hierarchy process (AHP) has successfully been applied in many areas, either selecting or ranking alternatives or to derive priority vector (weights) for a set of criteria, there is a significant drawback in using this technique if the pairwise comparison matrix (PCM) has inconsistent comparisons, in other words, a consistency ratio (CR) above the value of 0.1, the final solution cannot be validated. Many studies have been developed to treat the inconsistency problem, but few of them tried to satisfy different quality measures, which are minimum inconsistency (fMI), the total number of adjusted pairwise comparisons (fNC), original rank preservation (fKT), minimum average weights adjustment (fWA) and finally, minimum L1 matrix norm between the original PCM and the adjusted PCM (fLM).

Design/methodology/approach

The approach is defined in four steps: first, the decision-maker should choose which quality measures she/he wishes to use, ranging from one to all quality measures. In the second step, the authors encode the PCM to be used in a many-objective optimization algorithm (MOOA), and each pairwise comparison can be adjusted individually. The authors generate consistent solutions from the obtained Pareto optimal front that carry the desired quality measures in the third step. Lastly, the decision-maker selects the most suitable solution for her/his problem. Remarkably, as the decision-maker can choose one (mono-objective), two (multi-objective), three or more (many-objectives) quality measures, not all MOOAs can handle or perform well in mono- or multi-objective problems. The unified non-sorting algorithm III (U-NSGA III) is the most appropriate MOOA for this type of scenario because it was specially designed to handle mono-, multi- and many-objective problems.

Findings

The use of two quality measures should not guarantee that the adjusted PCM is similar to the original PCM; hence, the decision-maker should consider using more quality measures if the objective is to preserve the original PCM characteristics.

Originality/value

For the first time, a many-objective approach reduces the CR to consistent levels with the ability to consider one or more quality measures and allows the decision-maker to adjust each pairwise comparison individually.

Details

Data Technologies and Applications, vol. 56 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 13 June 2019

Sana Ben Salah and Mohamed Bechir Ben Hamida

The purpose of this paper is to optimize the configuration of a heat sink with phase change material for improving the cooling performance of light emitting diodes (LED).

Abstract

Purpose

The purpose of this paper is to optimize the configuration of a heat sink with phase change material for improving the cooling performance of light emitting diodes (LED).

Design/methodology/approach

A numerical three-dimensional time-dependent model is developed with COMSOL Multiphysics to simulate the phase change material melting process during both the charging and discharging period.

Findings

The model is validated with previously published works. It found a good agreement. The difference between filled cavities with phase change materials (PCM) and alternate cavities air-PCM is discussed. The last-mentioned showed a good ability for reducing the junction temperature during the melting time. Three cases of this configuration having the same total volume of PCM but a different number of cavities are compared. The case of ten fins with five PCM cavities is preferred because it permit a reduction of 21 per cent of the junction temperature with an enhancement ratio of 2:4. The performance of this case under different power input is verified.

Originality/value

The use of alternate air-PCM cavities of the heat sink. The use of PCM in LED to delay the peak temperature in the case of thermal shock (for example, damage of fan) An amount of energy is stored in the LED and it is evacuated to the ambient of the accommodation by the cycle of charging and discharging established (1,765 Joule stored and released each 13 min with 1 LED chip of 5 W).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 749