Search results

1 – 10 of 18
Article
Publication date: 4 January 2016

Chunyu Zhao, Shijun You, Hao Gao and Wei Yu

The purpose of this paper is to use numerical simulations to investigate the energy conversion performance and the flow and temperature structures inside horizontal tubes…

Abstract

Purpose

The purpose of this paper is to use numerical simulations to investigate the energy conversion performance and the flow and temperature structures inside horizontal tubes connected to a vertical manifold channel.

Design/methodology/approach

The simulations are performed for different flow rates and inlet temperatures using CFD.

Findings

In both the “flowing wind mode” and “upwind mode,” the inlet velocity is not infinitely small under the influence of natural convection; however, such small inlet velocities cannot be achieved in practice and are of no practical significance. In the “flowing wind mode,” the appropriate velocity for achieving high efficiency is 0.01-0.02 m/s. In the “upwind mode,” the appropriate velocity for obtaining high efficiency is 0.1-0.2 m/s. A high inlet temperature can lead to high efficiency; therefore, a large temperature difference and a small flow can be used in actual designs.

Originality/value

The energy conversion performance and flow structures inside evacuated tubular collectors were investigated using CFD for different operating conditions, notably in the “following wind mode” and the “upwind mode.”

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2005

M.A. Alghoul, M.Y. Sulaiman, B.Z. Azmi and M.Abd. Wahab

To cover the main contributions and developments in solar thermal collectors through focusing on materials, heat transfer characteristics and manufacturing challenges.

4598

Abstract

Purpose

To cover the main contributions and developments in solar thermal collectors through focusing on materials, heat transfer characteristics and manufacturing challenges.

Design/methodology/approach

A range of published papers and internet research including research work on various solar thermal collectors (flat plate, evacuated tubes, and heat pipe tube) were used. Evaluation of solar collectors performance is critiqued to aid solar technologies make the transition into a specific dominant solar collector. The sources are sorted into sections: finding an academic job, general advice, teaching, research and publishing, tenure and organizations.

Findings

Provides information about types of solar thermal collectors, indicating what can be added by using evacuated tube collectors instead of flat plate collectors and what can be added by using heat pipe collectors instead of evacuated tubes.

Research limitations/implications

Focusing only on three types of solar thermal collectors (flat plate, evacuated tubes, and heat pipe tube).

Practical implications

Useful source of information for consultancy and impartial advice for graduate students planning to do research in solar thermal technologies.

Originality/value

This paper fulfils identified information about materials and heat transfer properties of materials and manufacturing challenges of these three solar thermal collectors.

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 November 2022

Leilei Fan, Zhilin Sun, Wuyi Wan and Yunze Shen

To modify a conventional evacuated tube, an improved asymmetric U-type evacuated tube (AUET) is proposed. This study aims to investigate the thermal and hydrodynamic performances…

Abstract

Purpose

To modify a conventional evacuated tube, an improved asymmetric U-type evacuated tube (AUET) is proposed. This study aims to investigate the thermal and hydrodynamic performances of a modified tube and determine the optimal structural form.

Design/methodology/approach

Based on the variation of fluid proprieties with temperature, the formulated numerical model was validated and then deployed to investigate the natural circulation in the evacuated tubes. A dimensionless number was proposed to quantify the stratification effect. The influence of the degree of asymmetry of U-type evacuated tubes on the flow patterns, mass flow rate, temperature distribution, thermal stratification and energy conversion efficiency was studied.

Findings

When the degree of asymmetry is large, a higher velocity and better thermal stratification are achieved, thereby avoiding stagnant water at the bottom of the tubes simultaneously. Compared with the conventional evacuated tube, the improved evacuated tube exhibited a higher thermal efficiency.

Originality/value

The originally proposed AUET was proven to have better performance in avoiding stagnant water, reducing fluid mixing and improving the heat transfer efficiency.

Article
Publication date: 1 November 1998

F.O. Gaa, M. Behnia, S. Leong and G.L. Morrison

A numerical model of the inclined open thermosyphon has been developed using a finite difference algorithm to solve the vorticity vector potential form of the Navier‐Stokes…

Abstract

A numerical model of the inclined open thermosyphon has been developed using a finite difference algorithm to solve the vorticity vector potential form of the Navier‐Stokes equations. The model simulates flow in an inclined cylinder whose bottom end is sealed and whose top is connected to uniform temperature reservoir, a configuration typical of evacuated tubular solar absorbers. The solution domain includes the cylinder only without the reservoir; therefore a special set of boundary conditions has been derived for the vector potential at the top end which is a flow‐through surface. Steady flow is simulated at various combinations of Rayleigh number, aspect ratio and mode of heating. An experimental set‐up has also been developed in order to investigate the development of different flow patterns previously predicted by analytical and numerical workers, as well as to observe more closely the behaviour of the fluid at the orifice. Velocity profiles were measured at the orifice using laser doppler anemometry, and compared with predictions from the numerical model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 March 2012

Eshagh Yazdanshenas and Simon Furbo

Low flow bikini solar combisystems and high flow tank‐in‐tank solar combisystems have been studied theoretically. The aim of this paper is to study which of these two solar…

Abstract

Purpose

Low flow bikini solar combisystems and high flow tank‐in‐tank solar combisystems have been studied theoretically. The aim of this paper is to study which of these two solar combisystem designs is suitable for different houses. The thermal performance of solar combisystems based on the two different heat storage types is compared.

Design/methodology/approach

The thermal performance of Low flow bikini solar combisystems and high flow tank‐in‐tank solar combisystems is calculated with the simulation program TRNSYS. Two different TRNSYS models based on measurements were developed and used.

Findings

Based on the calculations it is concluded that low flow solar combisystems based on bikini tanks are promising for low energy buildings, while solar combisystems based on tank‐in‐tank stores are attractive for the houses with medium heating demand and old houses with high heating demand.

Originality/value

Many different Solar Combisystem designs have been commercialized over the years. In the IEA‐SHC Task 26, twenty one solar combisystems have been described and analyzed. Maybe the mantle tank approach also for solar combisystems can be used with advantage? This might be possible if the solar heating system is based on a so‐called bikini tank. Therefore, the new developed solar combisystems based on bikini tanks is compared to the tank‐in‐tank solar combisystems to elucidate which one is suitable for three different houses with low energy heating demand, medium and high heating demand.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 June 2016

Rupeshkumar V. Ramani, Bharat M. Ramani, Anjana D. Saparia, Nikesh A. Shah, Pinank Kacha and J.H. Markna

In the twenty-first century, the use of fossil fuels has increased drastically because the necessity of energy is increasing day by day which affects the world’s economy. The…

Abstract

Purpose

In the twenty-first century, the use of fossil fuels has increased drastically because the necessity of energy is increasing day by day which affects the world’s economy. The solar energy (photo-thermal energy conversion) system is the most economical and eco-friendly alternative source. To increase the use of domestic as well as commercialization purpose, the authors have reviewed this paper on the solar water heater along with its structural mechanism for energy enhancement and to create easier stair steps for climbing on the green world dream.

Design/methodology/approach

In this study, nanotechnology has remarkably built its own use for extending thermal efficiency by using some gradual experiments. It is a phenomenon, like nanofluid (as a working fluid for a direct solar collector), nanocoating (on the surface of a solar-evacuated tube by using the chemical vapor deposition/physical vacuum deposition/sol–gel technique) and nanorod-based solar collector tube.

Findings

This invention gives greater efficiency rather than the conventional systems, but also this advancement is not too much supported in a low- temperature environment also, we can consider the poor light absorption characteristics of the pure water (Bencic, et al., 2000).

Originality/value

The basic idea and understanding of this phenomenon to improve solar collecting performance for obtaining a high working-fluid temperature are discussed in this paper.

Details

World Journal of Engineering, vol. 13 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 March 1958

Determining impurities in titanium, particularly oxygen and carbo. The authors describe a new analytical process for determining impurities in titanium, principally oxygen and…

Abstract

Determining impurities in titanium, particularly oxygen and carbo. The authors describe a new analytical process for determining impurities in titanium, principally oxygen and carbon. Titanium is attacked in evacuated, closed, hard glass vessels by bromine vapour in a self‐regulating process. The titanobromide thus produced may be isolated from metallic elements contaminating titanium, such as the bromides of Mg, Fe, etc., and from oxygen impurities remaining in the form of TiO2 and carbon impurities in the form of elementary carbon by a process of gradually heating the titanobromide to 200°C. by distillation and by freezing. Then the residue is again brominated in the closed vessel at 400°C. On opening the vessel the Mg, Fe and Ti contents remaining in the residue may be determined by conventional analytical methods and the carbon content established by a combustion method suitable for determining very small amounts of CO2. This combustion process may be applied directly for determining carbon in titanium base alloys as well. By this process Hungarian titanium samples were found to have oxygen contents ranging from 0.01 to 0.6%, with an error of ±5% and a carbon content of about 0.1% with an error of ±5%.—(T. Millner, J. Hegedus, M. Dvorszky (in German), Acta Technica Academiae Scientiarum Hungaricae, 15, (3–4), 361–372.)

Details

Anti-Corrosion Methods and Materials, vol. 5 no. 3
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 December 2022

Naveenkumar R., Shanmugam S. and Veerappan AR

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar…

Abstract

Purpose

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar still (DSSS).

Design/methodology/approach

Modified single basin DSSS integrated with solar operated vacuum fan and external water cooled condenser was fabricated using aluminium material. During sunny season, experimental investigations have been performed in both conventional and modified DSSS at a basin water depth of 3, 6, 9 and 12 cm. Production rate and cumulative distillate yield obtained in traditional and developed DSSS at different water depths were compared and best water depth to attain the maximum productivity and cumulative distillate yield was found out.

Findings

Results indicated that both traditional and modified double SS produced maximum yield at the minimum water depth of 3 cm. Cumulative distillate yield of the developed SS was 16.39%, 18.86%, 15.22% and 17.07% higher than traditional at water depths of 3, 6, 9 and 12 cm, respectively. Cumulative distillate yield of the developed SS at 3 cm water depth was 73.17% higher than that of the traditional SS at 12 cm depth.

Originality/value

Performance evaluation of DSSS at various water depths by integrating the combined solar operated Vacuum fan and external Condenser.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 September 2018

Evangelos Bellos, Ilias Daniil and Christos Tzivanidis

The purpose of this paper is to investigate a cylindrical flow insert for a parabolic trough solar collector. Centrally placed and eccentric placed inserts are investigated in a…

Abstract

Purpose

The purpose of this paper is to investigate a cylindrical flow insert for a parabolic trough solar collector. Centrally placed and eccentric placed inserts are investigated in a systematic way to determine which configuration leads to the maximum thermal enhancement.

Design/methodology/approach

The analysis is performed in SolidWorks Flow Simulation with a validated computational fluid dynamics model. Moreover, the useful heat production and the pumping work demand increase are evaluated using the exergy and the overall efficiency criteria. The different scenarios are compared for inlet temperature of 600 K, flow rate of 100 L/min and Syltherm 800 as the working fluid. Moreover, the inlet temperature is examined from 450 to 650 K, and the diameter of the insert is investigated up to 50 mm.

Findings

According to the final results, the use of a cylindrical insert of 30 mm diameter is the most sustainable choice which leads to 0.56 per cent thermal efficiency enhancement. This insert was examined in various eccentric positions, and it is found that the optimum location is 10 mm over the initial position in the vertical direction. The thermal enhancement, in this case, is about 0.69 per cent. The pumping work demand was increased about three times with the insert of 30 mm, but the absolute values of this parameter are too low compared to the useful heat production. So, it is proved that the increase in the pumping work is not able to eliminate the useful heat production increase. Moreover, the thermal enhancement is found to be greater at higher temperature levels and can reach up to 1 per cent for an inlet temperature of r650 K.

Originality/value

The present work is a systematic investigation of the cylindrical flow insert in a parabolic trough collector. Different diameters of this insert, as well as different positions in two dimensions, are examined using a parametrization of angle-radius. To the authors’ knowledge, there is no other study in the literature that investigates the presented many cases systematically with the followed methodology on parabolic trough collectors. Moreover, the results of this work are evaluated with various criteria (thermal, exergy and overall efficiency), something which is not found in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2012

Andrei Bologa, Hanns‐Rudolf Paur, Helmut Seifert, Klaus Woletz and Tobias Ulbricht

The aim of the paper is to present the results of investigations of fine particle generation by small biomass combustion and the possibility of reducing the emissions by…

Abstract

Purpose

The aim of the paper is to present the results of investigations of fine particle generation by small biomass combustion and the possibility of reducing the emissions by electrostatic precipitation.

Design/methodology/approach

The grains, wood‐logs, wood‐, mixed‐ and straw‐pellets were combusted in two stoves and two boilers. The set‐ups were operated according to DIN‐4702. Particle number concentration in the gas flow was measured by Scanning Mobility Particle Sizer and particle mass concentration was measured according to the Guidelines VDI‐2066 upstream and downstream a novel space charge electrostatic precipitator (ESP). The ESP consists of an ioniser and a grounded brush inside of a tube form grounded collector electrode.

Findings

The ESP ensures stable operation at gas temperatures up to 350°C. The use of sharp‐points high voltage electrode ensures effective particle charging at high particle number concentrations. The combustion of wood‐pellets is characterized by lower particle mass concentrations. The highest particle mass concentrations were observed by the straw‐pellets combustion. The ESP ensures particle collection with mass collection efficiency 87±3% for wood‐logs and 82±2% for wood‐pellets combustion.

Practical implications

The novel ESP is recommended for exhaust gas cleaning from small scale biomass combustion facilities and domestic heating units. The use of the ESP would reduce the emissions of fine aerosol into the atmosphere and improve the air quality.

Originality/value

The paper presents the comparative analysis of particle size distribution and particle mass concentrations in the exhaust gas from small‐scale combustion units for different types of biomass. The study confirms the possibility to reduce particle emissions by electrostatic precipitation. The originality of the technology and apparatus is patently protected.

Details

Management of Environmental Quality: An International Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1477-7835

Keywords

1 – 10 of 18