Search results

1 – 10 of 61
Article
Publication date: 4 August 2021

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load…

Abstract

Purpose

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load using the robust and reliable general-purpose finite element (FE) software ANSYS. A parametric study is carried out to analyse the flexural and ductility behaviour of RC beams under various influencing parameters.

Design/methodology/approach

To develop and validate the numerical FE models, a total of four experimentally tested simply supported RC beams are taken from the available literature and two beams are selected from each author. The concrete, steel reinforcements, bond-slip mechanism, loading and supporting plates are modelled using SOLID65, LINK180, COMBIN39 and SOLID185 elements, respectively. The validated models are then used to conduct parametric FE analysis to investigate the effect of concrete compressive strength, percentage of tensile reinforcement, compression reinforcement ratio, transverse shear reinforcement, bond-slip mechanism, concrete compressive stress-strain constitutive models, beam symmetry and varying overall depth of beam on the ultimate load-carrying capacity and ductility behaviour of RC beams.

Findings

The developed three-dimensional FE models can able to capture the load and midspan deflections at critical points, the accurate yield point of steel reinforcements, the formation of initial and progressive concrete crack patterns and the complete load-deflection curves of RC beams up to ultimate failure. From the numerical results, it can be concluded that the FE model considering the bond-slip effect with Thorenfeldt’s concrete compressive stress-strain model exhibits a better correlation with the experimental data.

Originality/value

The ultimate load and deflection results of validated FE models show a maximum deviation of less than 10% and 15%, respectively, as compared to the experimental results. The developed model is also capable of capturing concrete failure modes accurately. Overall, the FE analysis results were found quite acceptable and compared well with the experimental data at all loading stages. It is suggested that the proposed FE model is a practical and reliable tool for analyzing the flexural behaviour of RC members and can be used for performing parametric studies.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 August 2021

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

This paper aims to present nonlinear numerical simulations using the versatile finite element (FE) analysis tool ANSYS and theoretical analysis based on code provisions to assess…

Abstract

Purpose

This paper aims to present nonlinear numerical simulations using the versatile finite element (FE) analysis tool ANSYS and theoretical analysis based on code provisions to assess the load-carrying capacity of reinforced concrete (RC) beams under two-point monotonic static loadings.

Design/methodology/approach

Four quarter-size FE models with load and geometry symmetry conditions were constructed, the load-bearing capacity and associated mid-span deflections at critical points are verified against the full-scale experimental RC beams available in the literature. These developed FE models incorporated the tension stiffening effects and bond–slip behaviour. Theoretical analyses based on Indian standard code IS: 456–2000 and ACI 318–19 were also carried to verify the experimental and numerical predicted moments at critical loading points.

Findings

The load-deflection curves predicted through FE models exhibit closer corroboration with the experimental curves throughout the loading history. The contour plots for deflections, concrete principal stresses, reinforcement yield stresses are satisfactorily predicted by the FE models, which reveal the complete information of nonlinear behaviour of RC beams. The developed model well captured the initial and progressive crack patterns at each load increments.

Practical implications

The FE modelling is an efficient, valid and economical tool that is an alternative to the expensive experimental program and can be used to explore, analyse and fully understand the nonlinear response of RC beams under static loadings.

Originality/value

The ultimate moment capacity evaluated based on ACI 318–19 code provision show a better correlation with the experimental data as compared to the IS: 456–2000 code provision. The ultimate loads and associated centre-span deflections predicted by RN-2, RN-3, RB-12 and RB-16 FE model show a discrepancy of 1.66 and –0.49%, –4.68 and –0.60%, –9.38 and –14.53% and –4.37 and 4.21%, respectively, against the experimental results, which reveals that the developed ANSYS FE models predict consistent results and achieved a reasonable agreement with the experimental data.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 22 May 2023

Pandimani

The ultimate capacity and ductility behavior of a reinforced concrete (RC) beam generally depends on its constituent material properties. This study aims to use ANSYS to…

Abstract

Purpose

The ultimate capacity and ductility behavior of a reinforced concrete (RC) beam generally depends on its constituent material properties. This study aims to use ANSYS to accentuate the nonlinear parametric finite element (FE) simulations of RC sections under monotonic loading.

Design/methodology/approach

The concrete matrix and steel reinforcement are the primary constituent materials of RC beams. The material properties such as tensile reinforcement area, tensile bars yield strength, concrete compressive strength and strain rate in tensile reinforcement at nominal strength have significantly influenced the ultimate response of RC beams. Therefore, these intensive parameters are considered in this study to ascertain their effect on the RC beam's ultimate behavior. The nonlinear response up to the ultimate load capacity and the crack evolutions of RC beams are predicted efficiently.

Findings

The parametric study reveals that increasing the tensile steel reinforcements (from Ast = 213–857 mm2) significantly improves the ultimate load capacity by 229% and yield deflections by 20%. However, it declines the ultimate deflection by 47% and ductility by 56% substantially. Varying the strain limit (?tn = 0.010–0.0015) of tensile reinforcement has proficiently increased the ultimate load-resisting capacity by 20%, whereas the ductility declined by 62%. When the concrete strength increases (from fck = 25–65 MPa), the cracking load increases profoundly by 51%, whereas the ultimate capacity has found an insignificant effect.

Originality/value

The load-deflection response plots extracted from the proposed numerical model exhibit satisfactory accuracy (less than 9% deviation) against the experimental curves available in the literature, which emphasizes the proficiency of the proposed FE model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 December 2023

Nagat Zalhaf, Mariam Ghazy, Metwali Abdelatty and Mohamed Hamed Zakaria

Even though it is widely used, reinforced concrete (RC) is susceptible to damage from various environmental factors. The hazard of a fire attack is particularly severe because it…

Abstract

Purpose

Even though it is widely used, reinforced concrete (RC) is susceptible to damage from various environmental factors. The hazard of a fire attack is particularly severe because it may cause the whole structure to collapse. Furthermore, repairing and strengthening existing structures with high-performance concrete (HPC) has become essential from both technical and financial points of view. In particular, studying the postfire behavior of HPC with normal strength concrete substrate requires experimental and numerical investigations. Accordingly, this study aims to numerically investigate the post-fire behavior of reinforced composite RC slabs.

Design/methodology/approach

Consequently, in this study, a numerical analysis was carried out to ascertain the flexural behavior of simply supported RC slabs strengthened with HPC and exposed to a particularly high temperature of 600°C for 2 h. This behavior was investigated and analyzed in the presence of a number of parameters, such as HPC types (fiber-reinforced, 0.5% steel, polypropylene fibers [PPF], hybrid fibers), strengthening side (tension or compression), strengthening layer thickness, slab thickness, boundary conditions, reinforcement ratio and yield strength of reinforcement.

Findings

The results showed that traction-separation and full-bond models can achieve accuracy compared with experimental results. Also, the fiber type significantly affects the postfire performance of RC slab strengthened with HPC, where the inclusion of hybrid fiber recorded the highest ultimate load. While adding PPF to HPC showed a rapid decrease in the load-deflection curve after reaching the ultimate load.

Originality/value

The proposed model accurately predicted the thermomechanical behavior of RC slabs strengthened with HPC after being exposed to the fire regarding load-deflection response, crack pattern and failure mode. Moreover, the considered independent parametric variables significantly affect the composite slabs’ behavior.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 October 2003

H.Y. Leung and R.V. Balendran

Use of fibre‐reinforced polymer (FRP) composite rods, in lieu of steel rebars, as the main flexural reinforcements in reinforced concrete (RC) beams have recently been suggested…

2651

Abstract

Use of fibre‐reinforced polymer (FRP) composite rods, in lieu of steel rebars, as the main flexural reinforcements in reinforced concrete (RC) beams have recently been suggested by many researchers. However, the development of FRP RC beam design is still stagnant in the construction industry and this may be attributed to a number of reasons such as the high cost of FRP rods compared to steel rebars and the reduced member ductility due to the brittleness of FRP rods. To resolve these problems, one of the possible methods is to adopt both FRP rods and steel rebars to internally reinforce the concrete members. The effectiveness of this new reinforcing system remains problematic and continued research in this area is needed. An experimental study on the load‐deflection behaviour of concrete beams internally reinforced with glass fibre‐reinforced polymer (GFRP) rods and steel rebars was therefore conducted and some important findings are summarized in this paper.

Details

Structural Survey, vol. 21 no. 4
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 1 December 2002

H.Y. Leung

This paper aims to study the effect of external glass fibre reinforced polymer (GFRP) plates on the flexural and shear behaviour of structurally deficient reinforced concrete (RC

Abstract

This paper aims to study the effect of external glass fibre reinforced polymer (GFRP) plates on the flexural and shear behaviour of structurally deficient reinforced concrete (RC) beams, a total of ten 180mm×250mm×2,500mm beams, including over‐designed, unplated under‐designed and plated under‐designed, were tested under four‐point bending condition. Experimental results indicate that the use of GFRP plates enhances the strength and deformation capacity of RC beams by altering their failure modes. Application of side plates on shear‐deficient RC beams appears to be more effective than using bottom plates on flexure‐deficient RC beams. However, without any improvement of concrete compressive capacity, additional shear capacities provided to the beams under the action of side plates increase the likelihood of beam failure by concrete crushing. Simultaneous use of bottom and side plates on flexural‐ and shear‐deficient RC beams may result in reduced deflection.

Details

Structural Survey, vol. 20 no. 5
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 14 January 2020

Sabiha Barour, Abdesselam Zergua, Farid Bouziadi and Waleed Abed Jasim

This paper aims to develop a non-linear finite element model predicting the response of externally strengthened beams under a three-point flexure test.

Abstract

Purpose

This paper aims to develop a non-linear finite element model predicting the response of externally strengthened beams under a three-point flexure test.

Design/methodology/approach

The ANSYS software is used for modeling. SOILD65, LINK180, SHELL181 and SOLID185 elements are used, respectively, to model concrete, steel reinforcement, polymer and steel plate support. A parametric study was carried out. The effects of compressive strength, Young’s modulus, layers number and carbon fiber-reinforced polymer thickness on beam behavior are analyzed. A comparative study between the non-linear finite element and analytical models, including the ACI 440.2 R-08 model, and experimental data is also carried out.

Findings

A comparative study of the non-linear finite element results with analytical models, including the ACI 440.2 R-08 model and experimental data for different parameters, shows that the strengthened beams possessed better resistance to cracks. In general, the finite element model’s results are in good agreement with the experimental test data.

Practical implications

This model will predict the strengthened beams behavior and can describe the beams physical conditions, yielding the results that can be interpreted in the structural study context without using a laboratory testing.

Originality/value

On the basis of the results, a good match is found between the model results and experimental data at all stages of loading the tested samples. Crack models obtained in the non-linear finite element model in the beams are also presented. The submitted finite element model can be used to predict the behavior of the reinforced concrete beam. Also, the comparative study between an analytical model proposed by of current code of ACI 440.2 R-08 and finite element analysis is investigated.

Details

World Journal of Engineering, vol. 17 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 October 2020

Sabiha Barour and Abdesselam Zergua

This paper aims to analyze the performance of reinforced concrete (RC) beams strengthened in shear with carbon fiber-reinforced polymer (CFRP) sheets subjected to four-point…

Abstract

Purpose

This paper aims to analyze the performance of reinforced concrete (RC) beams strengthened in shear with carbon fiber-reinforced polymer (CFRP) sheets subjected to four-point bending.

Design/methodology/approach

ANSYS software is used to build six models. In addition, SOILD65, LINK180, SHELL181 and SOLID185 elements are used, respectively, to model concrete, steel reinforcement, polymer and steel plate support. A comparative study between the nonlinear finite element and analytical models, including the ACI 440.2 R-08 and FIB14 models as well as experimental data, is also carried out.

Findings

The comparative study of the nonlinear finite element results with analytical models shows that the difference between the predicted load capacity ranges from 4.44%–24.49% in the case of the ACI 440.2 R-08 model, while the difference for FIB14 code ranges from 2.69%–26.03%. It is clear that there is a good agreement between the nonlinear finite element analysis (NLFEA) results and the different expected CFRP codes.

Practical implications

This model can be used to explore the behavior and predict the RC beams strengthened in shear with different CFRP properties. They could be used as a numerical platform in contrast to expensive and time-consuming experimental tests.

Originality/value

On the basis of the results, a good match is found between the model results and the experimental data at all stages of loading the tested samples. Load capacities as well as load deflection curves are also presented. It is concluded that the differences between the loads at failure ranged from 0.09%–6.16% and 0.56%–4.98%, comparing with experimental study. In addition, the increase in compressive strength produces an increase in the ultimate load capacity of the beam. The difference in the ultimate load capacity was less than 30% when compared with the American Concrete Institute and FIB14 codes.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 27 July 2021

Mervin Ealiyas Mathews, Anand N, Diana Andrushia A, Tattukolla Kiran and Khalifa Al-Jabri

Building elements that are damaged by fire are often strengthened by fiber wrapping techniques. Self-compacting concrete (SCC) is an advanced building material that is widely used…

Abstract

Purpose

Building elements that are damaged by fire are often strengthened by fiber wrapping techniques. Self-compacting concrete (SCC) is an advanced building material that is widely used in construction due to its ability to flow and pass through congested reinforcement and fill the required areas easily without compaction. The aim of the research work is to examine the flexural behavior of SCC subjected to elevated temperature. This research work examines the effect of natural air cooling (AC) and water cooling (WC) on flexural behavior of M20, M30, M40 and M50 grade fire-affected retro-fitted SCC. The results of the investigation will enable the designers to choose the appropriate repair technique for improving the service life of structures.

Design/methodology/approach

In this study, an attempt has been made to evaluate the flexural behavior of fire exposed reinforced SCC beams retrofitted with laminates of carbon fiber reinforced polymer (CFRP), basalt fiber reinforced polymer (BFRP) and glass fiber reinforced polymer (GFRP). Beam specimens were cast with M20, M30, M40 and M50 grades of SCC and heated to 925ºC using an electrical furnace for 60 min duration following ISO 834 standard fire curve. The heated SCC beams were cooled by either natural air or water spraying.

Findings

The reduction in the ultimate load carrying capacity of heated beams was about 42% and 55% for M50 grade specimens that were cooled by air and water, respectively, in comparison with the reference specimens. The increase in the ultimate load was 54%, 38% and 27% for the specimens retrofitted with CFRP, BFRP and GFRP, respectively, compared with the fire-affected specimens cooled by natural air. Water-cooled specimens had shown higher level of damage than the air-cooled specimens. The specimens wrapped with carbon fiber could able to improve the flexural strength than basalt and glass fiber wrapping.

Originality/value

SCC, being a high performance concrete, is essential to evaluate the performance under fire conditions. This research work provides the flexural behavior and physical characteristics of SCC subjected to elevated temperature as per ISO rate of heating. In addition attempt has been made to enhance the flexural strength of fire-exposed SCC with wrapping using different fibers. The experimental data will enable the engineers to choose the appropriate material for retrofitting.

Details

Journal of Structural Fire Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 23 March 2022

Long Liu, Xingpeng Ma, Li Yan and Yongmei Wang

Embedding carbon fiber reinforced plastics (CFRP) bars in the tension zone of reinforced concrete (RC) beams is a widely used reinforcement method, which has the advantages of

Abstract

Purpose

Embedding carbon fiber reinforced plastics (CFRP) bars in the tension zone of reinforced concrete (RC) beams is a widely used reinforcement method, which has the advantages of strong anti-peel ability and high utilization of tensile materials. To further improve the flexural bearing capacity of RC beams, a new composite reinforcement method using the UHPC layer in the compressive zone of RC beams is proposed based on embedding CFRP bars in the tension zone of RC beams.

Design/methodology/approach

The finite element model of an RC experimental beam with CFRP bars embedded in the tension zone was carried out by ABAQUS. Besides, the reliability of the finite element model results was verified by comparing with the experimental results. On this basis, the flexural reinforcement effect of CFRP bars and UHPC layers on RC beams was analyzed.

Findings

Calculation results show the flexural bearing capacity of the beam strengthened by the new method is 15.9%, which is higher than that of the unreinforced beam, and 10.4% higher than that of the beam strengthened only with CFRP bars. The beam ductility ratio of the new method is 8.25%, which is slightly higher than that of the unreinforced beam and equal to that of the beam reinforced only with CFRP bars embedded in the tension zone. The effectiveness of the new method is further verified by using the analytical calculation method.

Originality/value

A new flexural reinforcement method for reinforced concrete beams is proposed, and the effectiveness of the method was verified by experiments and finite element model. The flexural bearing capacity and ductility of the new method were analyzed based on the load-deflection curve. Finally, the possibility of the new method was verified by analytical analysis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 61