Search results

1 – 10 of over 1000
Article
Publication date: 6 November 2017

Seishiro Matsubara, Kenjiro Tarada, Takaya Kobayashi, Toshiyuki Saitou, Manabu Umeda, Yasuko Mihara, Kai Oide, Hiroto Shin and Yasuhiro Katsuda

The purpose of this paper is to propose a set of constitutive functions for dried bodies for accurate prediction of the entire deformation process of ceramic products during…

Abstract

Purpose

The purpose of this paper is to propose a set of constitutive functions for dried bodies for accurate prediction of the entire deformation process of ceramic products during firing and to present relevant methods for determining their coefficients from a series of respective thermo-mechanical analysis (TMA) tests.

Design/methodology/approach

The function forms of the sintering-induced strain rate, viscoplastic multiplier and elastic modulus are formulated in order with reference to empirical data of relative densities. Separate TMA tests are conducted to identify their coefficients, while a stairway thermal cycle test is carried out to identify the parameters in the densification rate. Then, various finite element analyses (FEA) are performed for accuracy confirmation.

Findings

The performances of the present constitutive functions along with the identified material parameters were validated in comparison with the relevant test results. It has then been confirmed that these functions enable us to some extent to accurately estimate the non-mechanical and mechanical deformations of dried bodies during firing. Also, by performing FEA of an actual sanitary ware product, the applicability and capability of the proposed set of constitutive functions could be demonstrated.

Practical implications

The present methodology with the proposed constitutive functions is a simple, but reliable and practical approach for simulating the deformation process of arbitrary ceramic products subjected to firing and applicable for practical applications in various engineering fields.

Originality/value

The constitutive functions of the viscoplastic multiplier and elastic modulus, which enable us to properly characterize the mechanical behavior of dried bodies subjected to firing, are originally formulated in analogy with that of the sintering-induced strain.

Details

Engineering Computations, vol. 34 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 July 2024

Cho-Pei Jiang, Masrurotin Masrurotin, Maziar Ramezani, Alvian Toto Wibisono, Ehsan Toyserkani and Wojciech Macek

Fused deposition modeling (FDM) nowadays offers promising future applications for fabricating not only thermoplastic-based polymers but also composite PLA/Metal alloy materials…

Abstract

Purpose

Fused deposition modeling (FDM) nowadays offers promising future applications for fabricating not only thermoplastic-based polymers but also composite PLA/Metal alloy materials, this capability bridges the need for metallic components in complex manufacturing processes. The research is to explore the manufacturability of multi-metal parts by printing green bodies of PLA/multi-metal objects, carrying these objects to the debinding process and varying the sintering parameters.

Design/methodology/approach

Three different sample types of SS316L part, Inconel 718 part and bimetallic composite of SS316L/IN718 were effectively printed. After the debinding process, the printed parts (green bodies), were isothermally sintered in non-vacuum chamber to investigate the fusion behavior at four different temperatures in the range of 1270 °C−1530 °C for 12 h and slowly cooled in the furnace. All samples was assessed including geometrical assessment to measure the shrinkage, characterization (XRD) to identify the crystallinity of the compound and microstructural evolution (Optical microscopy and SEM) to explore the porosity and morphology on the surface. The hardness of each sample types was measured and compared. The sintering parameter was optimized according to the microstructural evaluation on the interface of SS316L/IN718 composite.

Findings

The investigation indicated that the de-binding of all the samples was effectively succeeded through less weight until 16% when the PLA of green bodies was successfully evaporated. The morphology result shows evidence of an effective sintering process to have the grain boundaries in all samples, while multi-metal parts clearly displayed the interface. Furthermore, the result of XRD shows the tendency of lower crystallinity in SS316L parts, whilst IN718 has a high crystallinity. The optimal sintering temperature for SS316L/IN718 parts is 1500 °C. The hardness test concludes that the higher sintering temperature gives a higher hardness result.

Originality/value

This study highlights the successful sintering of a bimetallic stainless steel 316 L/Inconel 718 composite, fabricated via dual-nozzle fused deposition modeling, in a non-vacuum environment at 1500 °C. The resulting material displayed maximum hardness values of 872 HV for SS316L and 755.5 HV for IN718, with both materials exhibiting excellent fusion without any cracks.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 October 2017

Changhui Song, Aibing Huang, Yongqiang Yang, Zefeng Xiao and Jia-kuo Yu

This study aims to achieve customized prosthesis for total joint arthroplasty and total hip arthroplasty. Selective laser sintering (SLS) as additive manufacturing could enable…

Abstract

Purpose

This study aims to achieve customized prosthesis for total joint arthroplasty and total hip arthroplasty. Selective laser sintering (SLS) as additive manufacturing could enable small-scale fabrication of customized Ultra High Molecular Weight Polyethylene (UHMWPE) components; however, the processes for SLS of UHMWPE need to be improved.

Design/methodology/approach

This paper begins by improving the preheating system of the SLS fabricating equipment and then fabricating cuboids with the same size and cuboids with same volume and different size to study the warpage, demonstrating the effect of the value and uniformity of the preheating temperature on component fabrication. Warpage, density and tensile properties are investigated from the perspective of energy input density. Finally, complicated industrial parts are produced effectively by using optimized technological parameters.

Findings

The results show that components can be fabricated effectively after the optimization of the SLS technological parameters i.e. the preheating temperature the laser power the scanning interval and the scanning speed. The resulting warpage was found to be less than 0.1 mm along with the density as 83.25 and the tensile strength up to 14.1 Mpa. UHMWPE sample parts with good appearance and strength are obtained after ascertaining the effect of each factor on the fabrication of the sample parts.

Originality/value

It is very challenging to fabricate UHMWPE sample parts by SLS. This is a new step in the fabrication of customized UHMWPE sample parts.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 July 2019

Md. Hazrat Ali, Shaheidula Batai and Dastan Sarbassov

This study highlights the demand for low-cost and high accuracy products through the design and development of new 3D printing technologies. Besides, significant progress has been…

2173

Abstract

Purpose

This study highlights the demand for low-cost and high accuracy products through the design and development of new 3D printing technologies. Besides, significant progress has been made in this field. A comparative study helps to understand the latest development in materials and future prospect of this technology.

Design/methodology/approach

Nevertheless, a large amount of progress still remains to be made. While some of the works have focused on the performances of the materials, the rest have focused on the development of new methods and techniques in additive manufacturing.

Findings

This paper critically evaluates the current 3D printing technologies, including the development and optimizations made to the printing methods, as well as the printed objects. Meanwhile, previous developments in this area and contributions to the modern trend in manufacturing technology are summarized briefly.

Originality/value

The paper can be summarized in three sections. Firstly, the existing printing methods along with the frequently used printing materials, as well as the processing parameters, and the factors which influence the quality and mechanical performances of the printed objects are discussed. Secondly, the optimization techniques, such as topology, shape, structure and mechanical property, are described. Thirdly, the latest development and applications of additive manufacturing are depicted, and the scope of future research in the relevant area is put forward.

Details

Rapid Prototyping Journal, vol. 25 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 January 2013

Haihong Zhu, Linda Ke, Wenjuan Lei, Cheng Dai and Baijin Chen

The purpose of this paper is to investigate the effect of the Q‐switching parameters on the sintering behavior of laser micro sintering Cu‐based metal powder, using Q‐switched…

Abstract

Purpose

The purpose of this paper is to investigate the effect of the Q‐switching parameters on the sintering behavior of laser micro sintering Cu‐based metal powder, using Q‐switched 1064 nm Nd‐YAG laser.

Design/methodology/approach

An experimental study has been performed. Metal powder mixture with Cu and Cu‐P alloy powders has been utilized. Q‐switching duration of 15 μs∼25 μs, rate of 25 kHz∼45 kHz have been used.

Findings

The results show that as the Q‐switching rate and duration increases, the peak laser power decreases and the densification enhances. However, an optimal peak laser power exists and if the peak laser power is too low, the density of the sample is also low. The densification regime of laser micro‐sintering is not only caused by the liquid phase filling the pores, but is also caused by the Cu powder migrating and by coalescence, e.g. including initial stage and intermediate stage of the traditional furnace liquid phase sintering. However, the degree of these stages depends on the peak power and input laser energy.

Originality/value

The effect of the Q‐switching parameters on sintering behavior of laser micro sintering Cu‐based metal powder using Q‐switched 1064 nm Nd‐YAG laser has been obtained. It is found that the densification behavior is Q‐switching parameters dependent, although the average laser power is same. The densification regime of laser micro‐sintering includes initial stage and intermediate stage of the traditional furnace liquid phase sintering, but the degree is Q‐switching parameters dependent.

Details

Rapid Prototyping Journal, vol. 19 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 January 2013

Barry Haworth, Neil Hopkinson, David Hitt and Xiaotao Zhong

Laser sintering kinetics and part reliability are critically dependent on the melt viscosity of materials, including polyamide 12 (PA‐12). The purpose of this paper is to…

1559

Abstract

Purpose

Laser sintering kinetics and part reliability are critically dependent on the melt viscosity of materials, including polyamide 12 (PA‐12). The purpose of this paper is to characterise the viscosity of PA‐12 powders using alternative scientific methods: constrained boundary flows (capillary rheometry) and rotational rheometry.

Design/methodology/approach

Various PA‐12 powders were selected and characterised by both techniques. Measurement of molecular weight was also carried out to interpret the viscosity data.

Findings

Results demonstrate conventional pseudoplastic flow in all PA‐12 materials. Zero‐shear viscosity has been quantified by rotational rheometry; a notable observation is the striking difference between virgin/used PA‐12. This is interpreted in terms of molecular weight and chain structure modifications, arising from polycondensation of PA‐12 held at the bed temperature during laser sintering.

Research limitations/implications

Accurate zero‐shear viscosity data provide scope for use in predictive computational models for laser sintering processes. Careful sample preparation and equipment operation are critical prerequisites for accurate rheological characterisation of PA‐12 powders.

Practical implications

Differences in flow behaviour and molecular structure allow prediction and deeper understanding of process‐property relationships in laser sintering, giving potential for further optimisation of material specification and in‐process machine parameter control.

Originality/value

This is believed to be the first time that techniques other than melt flow rate (MFR) have been reported to measure the viscosity of PA‐12 in a laser sintering context, noting the effects of pre‐drying and molecular weight, then predicting differences between virgin/used powders in practical sintering behaviour.

Details

Rapid Prototyping Journal, vol. 19 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 September 2005

K.M. Fan, W.L. Cheung and I. Gibson

The purpose of this paper is to report on a study of the movement of the powder bed material during selective laser sintering (SLS) of bisphenol‐A polycarbonate (PC) powder and…

1790

Abstract

Purpose

The purpose of this paper is to report on a study of the movement of the powder bed material during selective laser sintering (SLS) of bisphenol‐A polycarbonate (PC) powder and its effect on the morphology of the sintered specimen.

Design/methodology/approach

Two sintering experiments, i.e. single‐spot laser sintering and raster‐scan laser sintering, were carried out and the material movement mechanisms were investigated in situ and subsequently by scanning electron microscopy.

Findings

During the raster‐scan laser sintering process, the movement of the powder was found to be primarily perpendicular to the scanning direction. When sintering at a high laser power, it significantly affected the surface morphology of the sintered specimens and parallel surface bands occurred along the scanning direction.

Research limitations/implications

Experiments were carried out on a modified laser engraving machine rather than a commercial SLS machine.

Practical implications

A schematic model of the material movement mechanism for each of the sintering strategies is presented.

Originality/value

The results further the understanding of the sintering behaviour of the powder bed.

Details

Rapid Prototyping Journal, vol. 11 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 May 2008

C.E. Majewski, D. Oduye, H.R. Thomas and N. Hopkinson

To investigate the effects of the infra‐red power level on sintering behaviour in the high speed sintering (HSS) process.

1058

Abstract

Purpose

To investigate the effects of the infra‐red power level on sintering behaviour in the high speed sintering (HSS) process.

Design/methodology/approach

Single‐layer parts were produced using the HSS process, in order to determine the effect of the infra‐red power level on the maximum achievable layer thickness, and the degree of sintering. The parts were examined using both optical microscopy and contact methods.

Findings

It was initially expected that an increase in the infra‐red lamp powder might allow an increase in the depth of sintering that could be achieved, as a result of increased thermal transfer through the powder. However, results in fact indicated that there is a maximum layer thickness that can be achieved, as a result of part shrinkage in the z direction. Optical microscopy images have shown that a greater degree of sintering occurs at higher power levels, which would be expected to correspond to an improvement in the mechanical properties of the parts produced. These images also indicate that the radiation absorbing material forms in small “islands” on the powder bed surface. As sintering progresses, these islands begin to merge; this occurs to a greater extent at higher infra‐red lamp powers.

Research limitations/implications

These results are based only on single layer parts. Further work will examine the sintering characteristics of multiple layer parts.

Practical implications

Results have shown that, whilst it is not possible to increase the achievable layer thickness of the parts produced by modifying the infra‐red lamp power, the degree of sintering can be improved greatly by increasing the power.

Originality/value

HSS is an entirely new process which is currently still under development; the results presented here will directly impact the direction of further development and research into this process.

Details

Rapid Prototyping Journal, vol. 14 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 January 2022

Tobia Romano, Emanuele Migliori, Marco Mariani, Nora Lecis and Maurizio Vedani

Binder jetting is a promising route to produce complex copper components for electronic/thermal applications. This paper aims to lay a framework for determining the effects of…

Abstract

Purpose

Binder jetting is a promising route to produce complex copper components for electronic/thermal applications. This paper aims to lay a framework for determining the effects of sintering parameters on the final microstructure of copper parts fabricated through binder jetting.

Design/methodology/approach

The knowledge gained from well-established powder metallurgy processes was leveraged to study the densification behaviour of a fine high-purity copper powder (D50 of 3.4 µm) processed via binder jetting, by performing dilatometry and microstructural characterization. The effects of sintering parameters on densification of samples obtained with a commercial water-based binder were also explored.

Findings

Sintering started at lower temperature in cold-pressed (∼680 °C) than in binder jetted parts (∼900 °C), because the strain energy introduced by powder compression reduces the sintering activation energy. Vacuum sintering promoted pore closure, resulting in greater and more uniform densification than sintering in argon, as argon pressure stabilizes the residual porosity. About 6.9% residual porosity was obtained with air sintering in the presence of graphite, promoting solid-state diffusion by copper oxide reduction.

Originality/value

This paper reports the first systematic characterization of the thermal events occurring during solid-state sintering of high-purity copper under different atmospheres. The results can be used to optimize the sintering parameters for the manufacturing of complex copper components through binder jetting.

Details

Rapid Prototyping Journal, vol. 28 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 April 2024

Yanwei Dai, Libo Zhao, Fei Qin and Si Chen

This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.

Abstract

Purpose

This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.

Design/methodology/approach

Through microstructure observations and characterization, the influences of sintering process on the microstructure evolutions of sintered nano-silver were presented. And, the indentation load, indentation displacement curves of sintered silver under various sintering processes were measured by using nano-indentation test. Based on the nano-indentation test, a reverse analysis of the finite element calculation was used to determine the yielding stress and hardening exponent.

Findings

The porosity decreases with the increase of the sintering temperature, while the average particle size of sintered nano-silver increases with the increase of sintering temperature and sintering time. In addition, the porosity reduced from 34.88%, 30.52%, to 25.04% if the ramp rate was decreased from 25°C/min, 15°C/min, to 5°C/min, respectively. The particle size appears more frequently within 1 µm and 2 µm under the lower ramp rate. With reverse analysis, the strain hardening exponent gradually heightened with the increase of temperature, while the yielding stress value decreased significantly with the increase of temperature. When the sintering time increased, the strain hardening exponent increased slightly.

Practical implications

The mechanical properties of sintered nano-silver under different sintering processes are clearly understood.

Originality/value

This paper could provide a novel perspective on understanding the sintering process effects on the mechanical properties of sintered nano-silver.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 1000