Search results

1 – 10 of 610
Article
Publication date: 19 November 2021

Nur Adilah Liyana Aladdin and Norfifah Bachok

This paper aims to explore on stagnation point flow of Ag-CuO/water over a horizontal stretching/shrinking cylinder by adding the effect of chemical reaction, B together…

Abstract

Purpose

This paper aims to explore on stagnation point flow of Ag-CuO/water over a horizontal stretching/shrinking cylinder by adding the effect of chemical reaction, B together with the magnetic field, M.

Design/methodology/approach

A set of reduced ordinary differential equations from the governing equations of partial differential equations is obtained through similarities requirements. The resulting equations are solved using bvp4c in MATLAB2019a. The impact of various physical parameters such as curvature parameter, ϒ, chemical reaction rate, B, magnetic field, M and Schmidt numbers, Sc on shear stress, f0 local heat flux, -θ(0) and mass transfer, -(0) also for velocity, f(η), temperature, θ(η) and concentration, ∅(η) profiles have been plotted and briefly discussed. In this work, some vital characteristics such as local skin friction, Cf, local Nusselt number, Nux and local Sherwood number, Shx are chosen for physical and numerical analysis.

Findings

The findings expose that the duality of solutions appears in a shrinking region ( ε < 0). The value of skin friction, heat transfer rate and mass transfer rate reduction for existing of M, but in contrary result obtain for larger ϒ, B and Sc. Furthermore, the hybrid nanofluid demonstrates better heat transfer compared to nanofluid.

Practical implications

The hybrid nanofluid has widened its applications such as in electronic cooling, manufacturing, automotive, heat exchanger, solar energy, heat pipes and biomedical, as their efficiency in the heat transfer field is better compared to nanofluid.

Originality/value

The findings on stagnation point flow of Ag-CuO/water over a horizontal stretching/shrinking cylinder with the effect of chemical reaction, B and magnetic field, M is new and the originality is preserved for the benefits of future researchers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 October 2020

Iskandar Waini, Anuar Ishak and Ioan Pop

This study aims to investigate the flow impinging on a stagnation point of a shrinking cylinder subjected to prescribed surface heat flux in Al2O3-Cu/water hybrid nanofluid.

Abstract

Purpose

This study aims to investigate the flow impinging on a stagnation point of a shrinking cylinder subjected to prescribed surface heat flux in Al2O3-Cu/water hybrid nanofluid.

Design/methodology/approach

Using similarity variables, the similarity equations are obtained and then solved using bvp4c in MATLAB. The effects of several physical parameters on the skin friction and heat transfer rate, as well as the velocity and temperature profiles are analysed and discussed.

Findings

The outcomes show that dual solutions are possible for the shrinking case, in the range λc<λ<1, where λc is the bifurcation point of the solutions. Meanwhile, the solution is unique for λ1. Besides, the boundary layer is detached on the surface at λc, where the value of λc is affected by the hybrid nanoparticle φhnf and the curvature parameter γ. Moreover, the friction and the heat transfer on the surface increase with the rising values φhnf and γ. Finally, the temporal stability analysis shows that the first solution is stable in the long run, whereas the second solution is not.

Originality/value

The present work considers the problem of stagnation point flow impinging on a shrinking cylinder containing Al2O3-Cu/water hybrid nanofluid, with prescribed surface heat flux. This paper shows that two solutions are obtained for the shrinking case. Further analysis shows that only one of the solutions is stable as time evolves.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 October 2022

John H. Merkin, Yian Yian Lok and Ioan Pop

The purpose of this study is to obtain both the numerical and asymptotic solutions of the unsteady mixed convection flow and heat transfer over an expanding or contracting…

Abstract

Purpose

The purpose of this study is to obtain both the numerical and asymptotic solutions of the unsteady mixed convection flow and heat transfer over an expanding or contracting cylinder which is placed vertically.

Design/methodology/approach

Solutions of the governing ordinary (similarity) differential equations for the fluid flow and temperature field are obtained using the function bvp4c from MATLAB. The problem involves the Prandtl number σ, the mixed convection parameter λ and unsteadiness parameter S that characterize an expanding or contracting cylinder. This solution approach is capable of producing multiple solutions once the necessary assumptions are provided.

Findings

It is found that solutions exist for all negative values of S, expanding cylinder, and only for small positive values of S, contracting cylinder. Further, more than one solution is observed; numerical computation shows that the critical point of S becomes singular as λ approaching zero. For the case of expanding cylinder, the mixed convection parameter has a significant effect on both the flow and heat transfer characteristics. Asymptotic analysis also shows that when σ is large, dual solutions exist for some values of S and λ.

Originality/value

The present results are new and original for the study of the unsteady mixed convection flow and heat transfer over an expanding/contracting cylinder where numerical solutions are obtained for representative values of the involved parameters. Asymptotic solutions for large λ and large σ are derived.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 August 2022

Rusya Iryanti Yahaya, Norihan Md Arifin, Ioan Pop, Fadzilah Md Ali and Siti Suzilliana Putri Mohamed Isa

This paper aims to study the stagnation point flow of Al2O3–Cu/H2O hybrid nanofluid over a radially shrinking disk with the imposition of the magnetic field, viscous-Ohmic…

35

Abstract

Purpose

This paper aims to study the stagnation point flow of Al2O3–Cu/H2O hybrid nanofluid over a radially shrinking disk with the imposition of the magnetic field, viscous-Ohmic dissipation and convective boundary condition.

Design/methodology/approach

Similarity variables are introduced and used in reducing the governing partial differential equations into a system of ordinary differential equations. A built-in bvp4c solver in MATLAB is then used in the computation of the numerical solutions for equations (7) and (8) subject to the boundary conditions (9). Then, the behavior of the flow and thermal fields of the hybrid nanofluid, with various values of controlling parameters, are analyzed.

Findings

The steady flow problem resulted in multiple (dual) solutions. A stability analysis performed to identify the stable solution applicable in practice revealed that the first solution is stable while the second solution is unstable. The skin friction coefficient and Nusselt number of the hybrid nanofluid are found to be greater than the Al2O3–H2O nanofluid. Thus, the hybrid nanofluid has a better heat transfer performance than the nanofluid. Besides that, the presence of the magnetic field, suction, convective boundary condition and the enhancement of nanoparticle volume fraction of Cu augments the skin friction coefficient and Nusselt number of the hybrid nanofluid. Meanwhile, the presence of viscous-Ohmic dissipation reduces the heat transfer performance of the fluid.

Originality/value

To the best of the authors’ knowledge, the present results are original and new for the study of the flow and heat transfer of Al2O3–Cu/H2O hybrid nanofluid past a permeable radially shrinking disk. Considerable efforts have been directed toward the study of the boundary layer flow and heat transfer over stretching/shrinking surfaces and disks because of its numerous industrial applications, such as electronic, power, manufacturing, aerospace and transportation industries. Common heat transfer fluids such as water, alumina, cuprum and engine oil have limited heat transfer capabilities due to their low heat transfer properties. In contrast, metals have higher thermal conductivities than these fluids. Therefore, it is desirable to combine the two substances to produce a heat transfer medium that behaves like a fluid but has higher heat transfer properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 July 2020

Ubaidullah Yashkun, Khairy Zaimi, Nor Ashikin Abu Bakar, Anuar Ishak and Ioan Pop

This study aims to investigate the heat transfer characteristic of the magnetohydrodynamic (MHD) hybrid nanofluid over the linear stretching and shrinking surface in the…

Abstract

Purpose

This study aims to investigate the heat transfer characteristic of the magnetohydrodynamic (MHD) hybrid nanofluid over the linear stretching and shrinking surface in the presence of suction and thermal radiation effects.

Design/methodology/approach

Mathematical equations are transformed into pairs of self-similarity equations using similarity transformation. Boundary value problem solver (bvp4c) in MATLAB was adopted to solve the system of reduced similarity equations. In this study, the authors particularly examine the flow and heat transfer properties for different values of suction and thermal radiation parameters using single-phase nanofluid model. A comparison of the present results shows a good agreement with the published results.

Findings

It is noticed that the efficiency of heat transfer of hybrid nanofluid (Cu-Al2O3/H2O) is greater than the nanofluid (Cu/H2O). Furthermore, it is also found that dual solutions exist for a specific range of the stretching/shrinking parameter with different values of suction and radiation parameters. The results indicate that the skin friction coefficient and the local Nusselt number increase with suction effect. The values of the skin friction coefficient increases, but the local Nusselt number decreases for the first solution with the increasing of thermal radiation parameter. It is also observed that suction and thermal radiation widen the range of the stretching/shrinking parameter for which the solution exists.

Practical implications

In practice, the investigation on the flow and heat transfer of MHD hybrid nanofluid through a stretching/shrinking sheet with suction and thermal radiation effects is very important and useful. The problems related to hybrid nanofluid has numerous real-life and industrial applications, for example microfluidics, manufacturing, transportation, military and biomedical, etc.

Originality/value

In specific, this study focused on increasing thermal conductivity using a hybrid nanofluid mathematical model. This paper is able to obtain the dual solutions. To the best of author’s knowledge, this study is new and there is no previous published work similar to present study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 December 2020

Najiyah Safwa Khashi'ie, Norihan M. Arifin and Ioan Pop

This study aims to analyze the unsteady flow of hybrid Cu-Al2O3/water nanofluid over a permeable stretching/shrinking disc. The analysis of flow stability is also purposed…

Abstract

Purpose

This study aims to analyze the unsteady flow of hybrid Cu-Al2O3/water nanofluid over a permeable stretching/shrinking disc. The analysis of flow stability is also purposed because of the non-uniqueness of solutions.

Design/methodology/approach

The reduced differential equations (similarity) are solved numerically using the aid of bvp4c solver (Matlab). Two types of thermophysical correlations for hybrid nanofluid (Type 1 and 2) are adopted for the comparison results. Using correlation Type 1, the heat transfer and flow analysis including the profiles (velocity and temperature) are presented in the figures and tables with different values control parameters. Three sets of hybrid nanofluid are analyzed: Set 1 (1% Al2O3 + 1% Cu), Set 2 (0.5% Al2O3 + 1% Cu) and Set 3 (1% Al2O3 + 0.5% Cu).

Findings

The comparison of numerical values between present (Types 1 and 2 correlations) and previous (Type 2 correlations) results are in a good compliance with approximate percent relative error. The appearance of two solutions is noticed when the suction parameter is considered and the unsteady parameter is less than 0 (decelerating flow) for both stretching and shrinking disc while only one solution is possible for steady flow. The hybrid nanofluid in Set 1 can delay the separation of boundary layer but the hybrid nanofluid in Set 3 has the greatest heat transfer rate. Moreover, the inclusion of wall mass suction for stretching case can generate a significant increment of heat transfer rate approximately 90% for all fluids (water, single and hybrid nanofluids).

Originality/value

The present findings are novel and can be a reference point to other researchers to further analyze the heat transfer performance and stability of the working fluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 July 2019

Muhammad Waqas

This paper aims to address stagnation point flow of cross nanofluid in frames of hydromagnetics. Flow analysis subjected to expanding-contracting cylinder is studied.

Abstract

Purpose

This paper aims to address stagnation point flow of cross nanofluid in frames of hydromagnetics. Flow analysis subjected to expanding-contracting cylinder is studied.

Design/methodology/approach

Nonlinear problems are computed by using bvp4c procedure.

Findings

Radius of curvature and temperature-dependent heat sink-source significantly affects heat-mass transport mechanisms for cylindrical surface.

Originality/value

No such analysis has yet been reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 August 2022

Najiyah Safwa Khashi’ie, Iskandar Waini, Norihan Md Arifin and Ioan Pop

This paper aims to analyse numerically the unsteady stagnation-point flow of Cu-Al2O3/H2O hybrid nanofluid towards a radially shrinking Riga surface with thermal radiation.

Abstract

Purpose

This paper aims to analyse numerically the unsteady stagnation-point flow of Cu-Al2O3/H2O hybrid nanofluid towards a radially shrinking Riga surface with thermal radiation.

Design/methodology/approach

The governing partial differential equations are transformed into a set of ordinary (similar) differential equations by applying appropriate transformations. The numerical computation of these equations including the stability analysis is conducted using the bvp4c solver.

Findings

Two solutions are possible within the allocated interval: shrinking parameter, unsteadiness decelerating parameter, electro-magneto-hydrodynamics (EMHD) parameter, nanoparticles volumetric concentration, radiation parameter and width parameter, whereas the stability analysis certifies that the first (upper branch) solution, which fulfills the boundary conditions is the physical/real solution. The EMHD parameter generated from the application of Riga plate enhances the skin friction coefficient as well as the heat transfer process. The width parameter d is also one of the factors in the deterioration of the skin friction coefficient and heat transfer rate. It is crucial to control the width parameter of the magnets and electrodes to obtain the desired outcome. The radiation parameter is not affecting the boundary layer separation because the critical values are unchanged. However, the addition of radiation and unsteadiness decelerating parameters boosts the thermal rate.

Originality/value

The results are novel and contribute to the discovery of the flow and thermal performance of the hybrid nanofluid subjected to a radially shrinking Riga plate. Besides, this work is beneficial to the other researchers and general audience from industries regarding the factors which contribute to the thermal enhancement of the working fluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 March 2021

Najiyah Safwa Khashi'ie, Norihan M. Arifin, John H. Merkin, Rusya Iryanti Yahaya and Ioan Pop

The purpose of this paper is to numerically analyze the stagnation point flow of Cu-Al2O3/water hybrid nanofluid with mixed convection past a flat plate and circular cylinder.

Abstract

Purpose

The purpose of this paper is to numerically analyze the stagnation point flow of Cu-Al2O3/water hybrid nanofluid with mixed convection past a flat plate and circular cylinder.

Design/methodology/approach

The similarity equations that reduced from the boundary layer and energy equations are solved using the bvp4c solver. The duality of solutions is observed within the specific range of the control parameters, namely, mixed convection parameter λ, curvature parameter γ and nanoparticles volumetric concentration ϕ1 for alumina, while for copper ϕ2. The stability analysis is also designed to justify the particular solutions’ stability. Additionally, the idea to obtain the solution for large value of λ and γ is also presented in this paper.

Findings

Two solutions exist in opposing and assisting flows up to a critical value λc where λc lies in the opposing region. An upsurge of the curvature parameter tends to extend the critical value (delay the separation process), whilst increase the heat transfer performance of the working fluid. Meanwhile, the application of hybrid Cu-Al2O3/water nanofluid also can decelerate the separation of laminar boundary layer flow and produce higher heat transfer rate than the Cu–water nanofluid and pure water.

Originality/value

The results are new and original. This study benefits to the other researchers, specifically in the observation of the fluid flow characteristics and heat transfer rate of the hybrid nanofluid. Also, this paper features with the mathematical formulation for the solution with large values of λ and γ.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 February 2021

Liaquat Ali Lund, Zurni Omar and Ilyas Khan

The purpose of this study is to find the multiple branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid perfusing a porous medium over the…

Abstract

Purpose

The purpose of this study is to find the multiple branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid perfusing a porous medium over the stretching/shrinking surface. The extended model of Darcy due to Forchheimer and Brinkman has been considered to make the hybrid nanofluid model over the pores by considering the porosity and permeability effects.

Design/methodology/approach

The Tiwari and Das model with the thermophysical properties of spherical particles for efficient dynamic viscosity of the nanoparticle is used. The linear similarity transformations are applied to convert the partial differential equations into ordinary differential equations (ODEs). The system of governing ODEs is solved by using the three-stage Lobatto IIIa scheme in MATLAB for evolving parameters.

Findings

The system of governing ODEs produces dual branches. A unique stable branch is identified with help of stability analysis. The reduced heat transfer rate has been shown to increase with the reduced ϕ2 in both branches. Further, results revealed that the presence of multiple branches depends on the ranges of porosity, suction and stretching/shrinking parameters for the particular value of the rotating parameter.

Originality/value

Dual branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid have been found. Therefore, stability analysis of the branches is also conducted to know which branch is appropriate for the practical applications. To the best of the authors’ knowledge, this research is novel and there is no previously published work relevant to the present study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 610