Search results

1 – 10 of over 3000
Article
Publication date: 13 August 2018

Jinliang Liu, Yanmin Jia, Guanhua Zhang and Jiawei Wang

During service period, due to the overload or other non-load factors, diagonal cracks of the pre-stressed concrete beam are seriously affecting the safety of the bridge structure…

Abstract

Purpose

During service period, due to the overload or other non-load factors, diagonal cracks of the pre-stressed concrete beam are seriously affecting the safety of the bridge structure. The purpose of this paper is to quickly realize the shear bearing capacity and shear stiffness through maximum width of the diagonal cracks and make correct judgments.

Design/methodology/approach

Through the shear failure test of four test beams, collecting data of diagonal cracks and shear stiffness loss value. According to the deformation curve of the shear stiffness, and combined with the calculation formula of the maximum width of diagonal cracks, the formula for calculating the effective shear stiffness based on the maximum width of diagonal cracks is deduced, then the results are verified by test data. Data regression method is used to establish the effective shear stiffness loss ratio calculation formula, the maximum width of diagonal cracks used as a variable factor, and the accuracy of this formula is verified by comparing the shear failure test results of pre-stressed hollow plates.

Findings

With the increase in width of the diagonal crack, the loss rate of shear stiffness of the concrete beams is initially fast and then becomes slow. The calculation formulae for shear stiffness based on the maximum width of the diagonal cracks were deduced, and the feasibility and accuracy of the formulae were verified by analysis and calculation of shear test data.

Originality/value

A method for quickly determine the shear stiffness loss of structures by using maximum width of the diagonal cracks is established, and using this method, engineers can quickly determine effective shear stiffness loss ratio, without complex calculations. So this method not only ensures the safety of human life, but also saves money.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 April 1984

Lothar Haefner and Kaspar J. Willam

A simple beam element is developed for the solution of large deflection problems. The total Lagrangian formulation is based on the kinematic relations proposed by Reissner for…

Abstract

A simple beam element is developed for the solution of large deflection problems. The total Lagrangian formulation is based on the kinematic relations proposed by Reissner for finite rotations and stretching as well as shearing of plane beams. The motion is discretized by linear expansions of the global displacement components and the cross‐sectional rotation in two‐dimensional Euclidean space yielding a simple beam element with three degrees of freedom at the two nodes. The shear locking is reduced by selective integration in order to eliminate the spurious shear constraint similar to interdependent variable interpolation. The large rotation formulation is compared with two forms of moderate rotation theories which have been used in the past to develop the geometric stiffness properties for linear stability analysis of the so‐called Mindlin plate elements. The predictive value of different geometric stiffness approximations is assessed with several examples which range from the static and kinetic stability analysis of the classical Euler‐column to the large deflection problem of a clamped beam.

Details

Engineering Computations, vol. 1 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 11 September 2019

Ahmed M. Ellakany, Mohamad Ali, Mohamed A. El-Gohary and Mohamed Elkholy

The purpose of this paper is to introduce a numerical model to investigate static response of elastic steel-concrete beams. The numerical model is based on the lumped system with…

Abstract

Purpose

The purpose of this paper is to introduce a numerical model to investigate static response of elastic steel-concrete beams. The numerical model is based on the lumped system with the combination of the transfer matrix and the analog beam methods (ABM). The beams are composed of an upper concrete slab and a lower steel beam, connected at the interface by shear transmitting studs. This type of beam is widely used in constructions especially for highway bridges. The static field and point transfer matrices for the element of the elastic composite beam are derived. The present model is verified and is applied to study the static response of elastic composite beams with intermediate conditions. The intermediate condition is considered as an elastic support with various values of stiffness. The elastic support can be considered rigid when the stiffness has very high values. The influence effect of shear stiffness between the upper slab and lower beam, and the end shear restraint on the static behavior of the composite beams is studied. In addition, the change in the stiffness of the elastic support is also highlighted.

Design/methodology/approach

The objective of this study is to introduce a numerical model based on lumped system to calculate the static performance of elastic composite bridge beams having intermediate elastic support by combining the ABM with the transfer matrix method (TMM). The developed model is applicable for studying static and dynamic responses of steel-concrete elastic composite beams with different end conditions taking into account the effect of partial shear interactions. The validity of the lumped mass model is checked by comparing its results with a distributed model and good agreements are achieved (Ellakany and Tablia, 2010).

Findings

A model based on the lumped system of the elastic composite steel-concrete bridge beam with intermediate elastic support under static load is presented. The model takes into consideration the effect of the end shear restraint together with the interaction between the upper slab and the lower beam. Combining the analogical beam method with the TMM and analyzing the behavior of the elastic composite beam in terms of shear studs and stiffness, the following outcomes can be drawn: end shear restraint and stiffness of the shear layer are the two main factors affecting the response of elastic composite beams in terms of both the deflection and the moments. Using end shear restraint reduces the deflection extensively by about 40 percent compared to if it is not used assuming that: there is no interaction between the upper slab and the lower beam and the beam is acting as simply supported. As long as the shear layer stiffness increases or interaction exists, the deflection decreases. This reduced rate in deflection is smaller in case of existence of end shear restraint. The effect of the end shear restraint is more prevailing on reducing the deflections in case of partial interactions. However, its effect completely diminishes in case of complete interaction. Presence of the end shear restraint and shear layer stiffness produces almost the same variations in the components of the bending moments of the composite beam. Finally, for a complete interaction, comparing the case of using end shear restraint or the case without it, the differences in the values of the deflections and moments are almost negligible.

Research limitations/implications

The following assumptions related to the theory of ABM: shear studs connecting both sub-beams are modeled as a thin shear layer, each sub-beam has the same vertical displacement and the shear deformation in the sub-beams is neglected.

Practical implications

The developed model can be effectively used for a quick estimation of the dynamic responses of elastic composite beams in real life rather than utilizing complicated numerical models.

Social implications

The applications of this model can be further extended for studying the behavior of complex bridge beams that will guarantee the safety of the public in a quick view.

Originality/value

Previous models combined the TMM with the ABM for studying the static and free-vibration behaviors of elastic composite beams assuming that the field element is subjected to a distributed load. To study the dynamic response of elastic composite beams subjected to different moving loads using transfer matrix ABM, it was essential to use a massless field element and concentrate the own weight of the beam at the point element. This model is considered a first step for studying the impact factors of elastic composite beams subjected to moving loads.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 January 1990

R.C. Averill and J.N. Reddy

A study of the behaviour of shear deformable plate finite elements is carried out to determine why and under what conditions these elements lock, or become overly stiff. A new…

Abstract

A study of the behaviour of shear deformable plate finite elements is carried out to determine why and under what conditions these elements lock, or become overly stiff. A new analytical technique is developed to derive the exact form of the shear constraints which are imposed on an element when its side‐to‐thickness ratio is large. The constraints are expressed in terms of the nodal degrees of freedom, and are interpreted as being either the proper Kirchhoff constraints or spurious locking constraints. To gain a better understanding of locking phenomena, the constraints which arise under full and reduced integration are derived for various plate elements. These include bilinear, biquadratic, eight‐node serendipity and heterosis elements. These analytical findings are compared with numerical results of isotropic and laminated composite plates, verifying the role that shear constraints play in determining the behaviour of thin shear deformable elements. The results of the present study lead to definitive conclusions regarding the origin of locking phenomena and the effect of reduced integration.

Details

Engineering Computations, vol. 7 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 8 July 2019

Mohammad Hajjar, Elie Hantouche and Ahmad El Ghor

This study aims to develop a rational model to predict the thermal axial forces developed in shear tab connections with composite beams when subjected to transient-state fire…

Abstract

Purpose

This study aims to develop a rational model to predict the thermal axial forces developed in shear tab connections with composite beams when subjected to transient-state fire temperatures.

Design/methodology/approach

Finite element (FE) models are first developed in ABAQUS and validated against experimental data available in the literature. Second, a parametric study is conducted to identify the major parameters that affect the behavior of shear tab connections with composite beams in the fire. This includes beam length, shear tab thickness, shear tab location, concrete slab thickness, setback distance and partial composite action. A design-oriented model is developed to predict the thermal induced axial forces during the heating and cooling phases of a fire event. The model consists of multi-linear springs that can predict the stiffness and strength of each component of the connection with the composite beam.

Findings

The FE results show that significant thermal axial forces are generated in the composite beam in the fire. This is prominent when the beam bottom flange comes in contact with the column. Fracture at the toe of the welds governs the behavior during the cooling phase in most FE simulations. Also, the rational model is validated against the FE results and is capable of predicting the thermal axial forces developed in shear tab connections with composite beams under different geometrical properties.

Originality/value

The proposed model can predict the thermal axial force demand and can be used in performance-based approaches in future structural fire engineering applications.

Details

Journal of Structural Fire Engineering, vol. 10 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 6 July 2015

Yiru Ren, Jinwu Xiang and Zheqi Lin

– The purpose of this paper is to get the topology shape and material distribution of composite rotor beam under the requirement of cross-sectional characteristics.

Abstract

Purpose

The purpose of this paper is to get the topology shape and material distribution of composite rotor beam under the requirement of cross-sectional characteristics.

Design/methodology/approach

A new multi-material topology optimization method is given. Designated shear center (SC) position and stiffness terms are combined as the objective function. Multi-material model including isotropic and anisotropic materials are employed. Sensitivity analysis is given based on gradient-based algorithm, and density filtering scheme is adopted to avoid checkerboard problem.

Findings

The topology design method of composite rotor beam provides innovative cross-sectional shape and material distribution method. The final topology shape like “ > ” is given for different material types and cross-sectional shape under SC position requirement. The coefficient of stiffness components has great influence on the cross-sectional final topology shape.

Research limitations/implications

The proposed method is just to give cross-sectional topology shape. To obtain final actual composite rotor beam structure, shape and size optimization should be conducted if the topology shape is given.

Practical implications

This method is suitable for the preliminary design of helicopter rotor beam to get designated SC position and stiffness terms.

Originality/value

The proposed method provides a new gradient-based algorithm for multi-material topology optimization design of composite rotor beam.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 10 October 2016

Aníbal J.J. Valido and João Barradas Cardoso

The purpose of this paper is to present a design sensitivity analysis continuum formulation for the cross-section properties of thin-walled laminated composite beams. These…

Abstract

Purpose

The purpose of this paper is to present a design sensitivity analysis continuum formulation for the cross-section properties of thin-walled laminated composite beams. These properties are expressed as integrals based on the cross-section geometry, on the warping functions for torsion, on shear bending and shear warping, and on the individual stiffness of the laminates constituting the cross-section.

Design/methodology/approach

In order to determine its properties, the cross-section geometry is modeled by quadratic isoparametric finite elements. For design sensitivity calculations, the cross-section is modeled throughout design elements to which the element sensitivity equations correspond. Geometrically, the design elements may coincide with the laminates that constitute the cross-section.

Findings

The developed formulation is based on the concept of adjoint system, which suffers a specific adjoint warping for each of the properties depending on warping. The lamina orientation and the laminate thickness are selected as design variables.

Originality/value

The developed formulation can be applied in a unified way to open, closed or hybrid cross-sections.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 July 2017

Mohannad Naser and Venkatesh Kodur

This paper aims to present results from numerical studies on the response of fire exposed composite girders subjected to dominant flexural and shear loading. A finite…

Abstract

Purpose

This paper aims to present results from numerical studies on the response of fire exposed composite girders subjected to dominant flexural and shear loading. A finite element-based numerical model was developed to trace the thermal and structural response of composite girders subjected to simultaneous structural loading and fire exposure. This model accounts for various critical parameters including material and geometrical nonlinearities, property degradation at elevated temperatures, shear effects, composite interaction between concrete slab and steel girder, as well as temperature-induced local buckling. To generate test data for validation of the model, three composite girders, each comprising of hot-rolled (standard) steel girder underneath a concrete slab, were tested under simultaneous fire and gravity loading.

Design/methodology/approach

The validated model was then applied to investigate the effect of initial geometric imperfections, load level, thickness of slab and stiffness of shear stud on fire response of composite girders.

Findings

Results from experimental and numerical analysis indicate that the composite girder subjected to flexural loading experience failure through flexural yielding mode, while the girders under shear loading fail through in shear web buckling mode. Further, results from parametric studies clearly infer that shear limit state can govern the response of fire exposed composite girders under certain loading configuration and fire scenario.

Originality/value

This paper presents results from numerical studies on the response of fire exposed composite girders subjected to dominant flexural and shear loading.

Details

Journal of Structural Fire Engineering, vol. 9 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 October 1997

Belinda T. Orzada, Mary Ann Moore and Billie J. Collier

Undesirable garment drape often occurs because of the manufacturer’s desire to save fabric by rotating patterns to position them more closely in the marker, and thus cutting the…

836

Abstract

Undesirable garment drape often occurs because of the manufacturer’s desire to save fabric by rotating patterns to position them more closely in the marker, and thus cutting the garment off‐grain. This study was designed to subjectively and objectively measure the effect of grain alignment on fabric and garment drape. Data from an apparel industry survey were utilized to establish tilt values for quantitative analysis of drape and shear. Twelve tilt combinations were examined. No significant differences were found between drape values of control samples and those with tilt variations. Generally, shear stiffness and hysteresis values increased as tilt angles increased across all fabrics. Asymmetry of shear curves also increased. Twenty‐one apparel design students subjectively evaluated fabrics draped on a pedestal and skirts constructed in each tilt variation. Fabric drape amount evaluations were more highly correlated with drape values than were drape preference evaluations. Advanced design students were more sensitive to small differences in garment drape than were beginning students.

Details

International Journal of Clothing Science and Technology, vol. 9 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 January 1961

H.L. Cox

The free and harmonically forced flexural vibrations of missiles accelerating along initial trajectories are considered. A general matric formulation is given for the problem…

Abstract

The free and harmonically forced flexural vibrations of missiles accelerating along initial trajectories are considered. A general matric formulation is given for the problem whereby the effects of variable inertial axial loads along the missile length, variable stiffness and material properties, variable mass, variable mass moment of inertia, variable shear stiffness, and variably distributed forcing functions are treated. The matric formulation of the problem is in standard eigenvalue form and no special coding will be required for organizations that currently are solving eigenvalue problems on electronic digital computers. The time required for an engineer to fill in the matrices of the basic matric equation governing the vibrations of a missile structure is quite small since only fundamental data are needed and almost all calculations are performed within the computer.

Details

Aircraft Engineering and Aerospace Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 3000