Search results

1 – 10 of over 2000
To view the access options for this content please click here
Article

Namita Nanda

The purpose of the study is to present a frequency domain spectral finite element model (SFEM) based on fast Fourier transform (FFT) for wave propagation analysis of smart…

Abstract

Purpose

The purpose of the study is to present a frequency domain spectral finite element model (SFEM) based on fast Fourier transform (FFT) for wave propagation analysis of smart laminated composite beams with embedded delamination. For generating and sensing high-frequency elastic waves in composite beams, piezoelectric materials such as lead zirconate titanate (PZT) are used because they can act as both actuators and sensors. The present model is used to investigate the effects of parametric variation of delamination configuration on the propagation of fundamental anti-symmetric wave mode in piezoelectric composite beams.

Design/methodology/approach

The spectral element is derived from the exact solution of the governing equation of motion in frequency domain, obtained through fast Fourier transformation of the time domain equation. The beam is divided into two sublaminates (delamination region) and two base laminates (integral regions). The delamination region is modeled by assuming constant and continuous cross-sectional rotation at the interfaces between the base laminate and sublaminates. The governing differential equation of motion for delaminated composite beam with piezoelectric lamina is obtained using Hamilton’s principle by introducing an electrical potential function.

Findings

A detailed study of the wave response at the sensor shows that the A0 mode can be used for delamination detection in a wide region and is more suitable for detecting small delamination. It is observed that the amplitude and time of arrival of the reflected A0 wave from a delamination are strongly dependent on the size, position of the delamination and the stacking sequence. The degraded material properties because of the loss of stiffness and density in damaged area differently alter the S0 and A0 wave response and the group speed. The present method provides a potential technique for researchers to accurately model delaminations in piezoelectric composite beam structures. The delamination position can be identified if the time of flight of a reflected wave from delamination and the wave propagation speed of A0 (or S0) mode is known.

Originality/value

Spectral finite element modeling of delaminated composite beams with piezoelectric layers has not been reported in the literature yet. The spectral element developed is validated by comparing the present results with those available in the literature. The spectral element developed is then used to investigate the wave propagation characteristics and interaction with delamination in the piezoelectric composite beam.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article

Puneet Kumar and J. Srinivas

The purpose of this paper is to perform a numerical analysis on the static and dynamic behaviors of beams made up of functionally graded carbon nanotube (FG-CNT…

Abstract

Purpose

The purpose of this paper is to perform a numerical analysis on the static and dynamic behaviors of beams made up of functionally graded carbon nanotube (FG-CNT) reinforced polymer and hybrid laminated composite containing the layers of carbon reinforced polymer with CNT. Conventional fibers have higher density as compared to carbon nanotubes (CNTs), thus insertion of FG-CNT reinforced polymer layer in fiber reinforced composite (FRC) structures makes them sustainable candidate for weight critical applications.

Design/methodology/approach

In this context, stress and strain formulations of a multi-layer composite system is determined with the help of Timoshenko hypothesis and then the principle of virtual work is employed to derive the governing equations of motion. Herein, extended rule of mixture and conventional micromechanics relations are used to evaluate the material properties of carbon nanotube reinforced composite (CNTRC) layer and FRC layer, respectively. A generalized eigenvalue problem is formulated using finite element approach and is solved for single layer FG-CNTRC beam and multi-layer laminated hybrid composite beam by a user-interactive MATLAB code.

Findings

First, the natural frequencies of FG-CNTRC beam are computed and compared with previously available results as well as with Ritz approximation outcomes. Further, free vibration, bending, and buckling analysis is carried out for FG-CNTRC beam to interpret the effect of different CNT volume fraction, number of walls in nanotube, distribution profiles, boundary conditions, and beam-slenderness ratios.

Originality/value

A free vibration analysis of hybrid laminated composite beam with two different layer stacking sequence is performed to present the advantages of hybrid laminated beam over the conventional FRC beam.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article

Kristi L. Selden and Amit H. Varma

The purpose of this study was to develop a three-dimensional (3D) finite element modeling (FEM) technique using the commercially available program ABAQUS to predict the…

Abstract

Purpose

The purpose of this study was to develop a three-dimensional (3D) finite element modeling (FEM) technique using the commercially available program ABAQUS to predict the thermal and structural behavior of composite beams under fire loading.

Design/methodology/approach

The model was benchmarked using experimental test data, and it accounts for temperature-dependent material properties, force-slip-temperature relationship for the shear studs and concrete cracking.

Findings

It was determined that composite beams can be modeled with this sequentially coupled thermal-structural 3D FEM to predict the displacement versus bottom flange temperature response and associated composite beam failure modes, including compression failure in the concrete slab, runaway deflection because of yielding of the steel beam or fracture of the shear studs.

Originality/value

The Eurocode stress-strain-temperature (σ-ε-T) material model for structural steel and concrete conservatively predict the composite beam deflections at temperatures above 500°C. Models that use the National Institute of Standards and Technology (NIST) stress-strain-temperature (σ-ε-T) material model more closely match the measured deflection response, as compared to the results using the Eurocode model. However, in some cases, the NIST model underestimates the composite beam deflections at temperatures above 500°C.

Details

Journal of Structural Fire Engineering, vol. 7 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

To view the access options for this content please click here
Article

Mohammad Hajjar, Elie Hantouche and Ahmad El Ghor

This study aims to develop a rational model to predict the thermal axial forces developed in shear tab connections with composite beams when subjected to transient-state…

Abstract

Purpose

This study aims to develop a rational model to predict the thermal axial forces developed in shear tab connections with composite beams when subjected to transient-state fire temperatures.

Design/methodology/approach

Finite element (FE) models are first developed in ABAQUS and validated against experimental data available in the literature. Second, a parametric study is conducted to identify the major parameters that affect the behavior of shear tab connections with composite beams in the fire. This includes beam length, shear tab thickness, shear tab location, concrete slab thickness, setback distance and partial composite action. A design-oriented model is developed to predict the thermal induced axial forces during the heating and cooling phases of a fire event. The model consists of multi-linear springs that can predict the stiffness and strength of each component of the connection with the composite beam.

Findings

The FE results show that significant thermal axial forces are generated in the composite beam in the fire. This is prominent when the beam bottom flange comes in contact with the column. Fracture at the toe of the welds governs the behavior during the cooling phase in most FE simulations. Also, the rational model is validated against the FE results and is capable of predicting the thermal axial forces developed in shear tab connections with composite beams under different geometrical properties.

Originality/value

The proposed model can predict the thermal axial force demand and can be used in performance-based approaches in future structural fire engineering applications.

Details

Journal of Structural Fire Engineering, vol. 10 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

To view the access options for this content please click here
Book part

Jun Xiu Low, Poi Ngian Shek and Mahmood Md Tahir

Composite slabs are gaining wide acceptance in many countries as they lend themselves to faster, lighter and more economic in construction buildings. The strength of…

Abstract

Composite slabs are gaining wide acceptance in many countries as they lend themselves to faster, lighter and more economic in construction buildings. The strength of composite slabs system relies on the bonding action between the concrete and the steel deck, the shear connections and the cross-sectional resistance of steel beam. However, structural behaviour of composite slab is a complex phenomenon and therefore experimental study is often conducted to establish the actual strength of the structure under ultimate load capacity. The main objective of this study is to determine the structural behaviour of composite slab system until ultimate limit state. Total of two specimens are examined in order to obtain failure mechanism of the composite structure under full load capacity. A new design approach of composite slab for roofing system are proposed in this study to construct a composite slab system that can float in the water but not wash away by flood. The lightweight materials in this composite construction are cold-formed steel and foam concrete. The system focuses on the concept of Industrialised building system (IBS) to reduce the cost and construction time.

Details

Improving Flood Management, Prediction and Monitoring
Type: Book
ISBN: 978-1-78756-552-4

Keywords

To view the access options for this content please click here
Article

Prashant M. Pawar, Sung Nam Jung and Babruvahan P. Ronge

The purpose of this paper is to develop an analytical approach to evaluate the influence of material uncertainties on cross‐sectional stiffness properties of thin walled…

Abstract

Purpose

The purpose of this paper is to develop an analytical approach to evaluate the influence of material uncertainties on cross‐sectional stiffness properties of thin walled composite beams.

Design/methodology/approach

Fuzzy arithmetic operators are used to modify the thin‐walled beam formulation, which was based on a mixed force and displacement method, and to obtain the uncertainty properties of the beam. The resulting model includes material uncertainties along with the effects of elastic couplings, shell wall thickness, torsion warping and constrained warping. The membership functions of material properties are introduced to model the uncertainties of material properties of composites and are determined based on the stochastic behaviors obtained from experimental studies.

Findings

It is observed from the numerical studies that the fuzzy membership function approach results in reliable representation of uncertainty quantification of thin walled composite beams. The propagation of uncertainties is also demonstrated in the estimation of structural responses of composite beams.

Originality/value

This work demonstrates the use of fuzzy approach to incorporate uncertainties in the responses analytically, in turn improving computational efficiency drastically as compared to the Monte‐Carlo method.

To view the access options for this content please click here
Article

M. Ait Ameur Meziane, S. Benyoucef, A. Tounsi and E.A. Adda Bedia

Fibre‐reinforced plastic (FRP) materials have been recognised as new innovative materials for concrete rehabilitation and retrofit. Since concrete is poor in tension, a…

Abstract

Fibre‐reinforced plastic (FRP) materials have been recognised as new innovative materials for concrete rehabilitation and retrofit. Since concrete is poor in tension, a beam without any form of reinforcement will fail when subjected to a relatively small tensile load. Therefore, the bonding of FRP plate to reinforced concrete (RC) structure is an effective solution to increase its overall strength. In such plated beams, tensile forces develop in the bonded plate and these have to be transferred to the original beam via interfacial shear and normal stresses. Consequently, the debonding of FRP plates bonded to reinforced concrete beams is believed to be initiated by the stress concentration in the adhesive layer. Accurate predictions of the interfacial stresses are prerequisite for designing against debonding failures. In the present analysis, a simple theoretical model to estimate shear and normal stresses is proposed, including the variation in FRP plate fibre orientation. The solution shows significant shear and normal stresses concentration at the plates end. A parametrical study is carried out to show the effects of some design variables, e.g., thickness of adhesive layer and FRP plate, and the distance from support to cut ‐ off end of bonded plates.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article

Fariz Aswan Ahmad Zakwan, Ruqayyah Ismail, Renga Rao Krishnamoorthy and Azmi Ibrahim

This paper aims to investigate the predicted temperature behaviour of the protected cellular steel beam (CSB) with circular web openings at elevated temperature through…

Abstract

Purpose

This paper aims to investigate the predicted temperature behaviour of the protected cellular steel beam (CSB) with circular web openings at elevated temperature through finite element simulation.

Design/methodology/approach

Temperature development along the CSB were analysed and used for parametric investigation. In addition, this research paper investigates the novelty application of various intumescent coating thicknesses covering the whole CSB to cut down the temperature development along the beam section.

Findings

From the simulation outcomes, it shows that intumescent coating has a significant effect in reducing the temperature development along the CSB section. Thicker intumescent coating contributes to a higher temperature drop at the bottom tee section than the upper tee section.

Originality/value

The use of structural CSB has gained popularity among engineers and architects. This type of beam allows serviceability ducts and pipes to pass through the main steel web section under the flooring system, thus providing larger headroom for designers. Nevertheless, in any structural steel building, it is highly risky for CSB to be exposed to fire hazard if it were triggered accidentally. To mitigate and reduce fire exposure risk which might compromise the strength and stiffness of CSB, a passive fire protection is proposed to minimise the risk. One of the common passive fire protection materials used for steel beam section is intumescent coating. Intumescent coating is by far the cheapest solution to protect CSB as compared to other passive fire protection system. Intumescent coating can absorb some portion of heat exposure which subsequently translates a lower temperature development along the CSB section.

Details

Journal of Structural Fire Engineering, vol. 11 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

To view the access options for this content please click here
Article

Chrysanthos Maraveas

The DELTA® beam composite floor system is a recently developed shallow floor type that has seen many applications in contemporary construction. It involves partially…

Abstract

Purpose

The DELTA® beam composite floor system is a recently developed shallow floor type that has seen many applications in contemporary construction. It involves partially encasing DELTA® steel beams in concrete, with the lower flange remaining exposed. Besides the satisfactory behavior of the system at ambient conditions, understanding its response under elevated temperatures is critical in evaluating its overall performance. Despite certification from the manufacturing company that the system has adequate fire resistance, its behavior under fire conditions has neither been investigated to depth nor reported in detail. The purpose of this paper is the detailed numerical investigation of their behavior in fire. For this reason, the finite element method was implemented in this paper to simulate the response of such beams subjected to fire. Material properties were modeled according to the Eurocodes. The coupled thermal-structural parametric analyses involved four different variations of the “shortest” and “deepest” cross-section (eight case studies in total) specified by the manufacturing company. Other simulations of these cross-sections, in which either the thermal expansion or the structural load were not taken into account, were carried out for comparison purposes.

Design/methodology/approach

The methodology for simulating such systems, which has been successfully implemented and validated against fire test results elsewhere (Maraveas et al., 2012) was also followed here. To investigate the statement made by Maraveas et al. (2014) and the equations proposed by Zaharia and Franssen (2012) that the insulation is not so effective for “short” cross-sections, two beams, one with a D20-200 (Deltabeam Technical Manual, 2013) cross-section (shallowest section) and one with a D50-600 (Deltabeam Technical Manual, 2013) cross-section (deepest section), were simulated in this paper for comparison purposes. Additionally, reasonable assumptions were made for the cross-sectional dimensions not specified by the manufacturer (Deltabeam Technical Manual, 2013) and parametric analyses were carried out to investigate their effect on the structural response of the system.

Findings

Composite DELTA® beams can achieve fire resistances ranging from 120 to 180 min, depending on the depth and geometry of their cross-section, with deeper sections displaying a better fire response. The intense thermal bowing that occurs when these beams are heated from below has a more pronounced effect, in terms of thermally induced deflections for deeper sections. The satisfactory fire resistance of these beams is achieved due to the action of the concrete encased web and the reinforcement which compensate for the loss of the exposed lower flange. Increasing the thickness of the web in deeper sections improves their fire rating up to 180 min. The thickness of the lower flange affects the fire rating of the beams only in a minor way.

Practical/implications

The paper describes a numerical methodology to estimate the fire resistance of complex flooring systems.

Details

Journal of Structural Fire Engineering, vol. 8 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 2000