Search results

1 – 10 of over 6000
Article
Publication date: 21 October 2021

Feng Gao, Pan-Pan Li and Yan Li

For ball screw feed system, a sudden start or stop has a great influence on the transmission stiffness, so the axial stiffness mutation of feed system will occur. The…

Abstract

Purpose

For ball screw feed system, a sudden start or stop has a great influence on the transmission stiffness, so the axial stiffness mutation of feed system will occur. The purpose of this paper is to study the influence of acceleration on the transmission stiffness and dynamic characteristics of the ball screw feed system.

Design/methodology/approach

Taking the ball screw feed system as a research object, on the basis of the Hertz contact theory and the mixed element method, axial stiffness model and dynamic model are established. And the system stability was analyzed by the time history diagram and Phase-plane portrait diagram. The feed system was analyzed theoretically and experimentally, the experimental results are in good agreement with the model results.

Findings

Lead screw lead angle, preload, load and start acceleration affected ball-screw pair, bearing and transmission stiffness. And the load, nut contact stiffness, bearing contact stiffness, preload have a large effect on the transmission stiffness. The results show that a certain acceleration value will make the axial stiffness abrupt change.

Originality/value

This research provides a useful theoretical support for ensuring a good dynamic for the ball screw feed system.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 March 2015

Dixon M Correa, Timothy Klatt, Sergio Cortes, Michael Haberman, Desiderio Kovar and Carolyn Seepersad

The purpose of this paper is to study the behavior of negative stiffness beams when arranged in a honeycomb configuration and to compare the energy absorption capacity of…

2404

Abstract

Purpose

The purpose of this paper is to study the behavior of negative stiffness beams when arranged in a honeycomb configuration and to compare the energy absorption capacity of these negative stiffness honeycombs with regular honeycombs of equivalent relative densities.

Design/methodology/approach

A negative stiffness honeycomb is fabricated in nylon 11 using selective laser sintering. Its force-displacement behavior is simulated with finite element analysis and experimentally evaluated under quasi-static displacement loading. Similarly, a hexagonal honeycomb of equivalent relative density is also fabricated and tested. The energy absorbed for both specimens is computed from the resulting force-displacement curves. The beam geometry of the negative stiffness honeycomb is optimized for maximum energy absorption per unit mass of material.

Findings

Negative stiffness honeycombs exhibit relatively large positive stiffness, followed by a region of plateau stress as the cell walls buckle, similar to regular hexagonal honeycombs, but unlike regular honeycombs, they demonstrate full recovery after compression. Representative specimens are found to absorb about 65 per cent of the energy incident on them. Optimizing the negative stiffness beam geometry can result in energy-absorbing capacities comparable to regular honeycombs of similar relative densities.

Research limitations/implications

The honeycombs were subject to quasi-static displacement loading. To study shock isolation under impact loads, force-controlled loading is desirable. However, the energy absorption performance of the negative stiffness honeycombs is expected to improve under force-controlled conditions. Additional experimentation is needed to investigate the rate sensitivity of the force-displacement behavior of the negative stiffness honeycombs, and specimens with various geometries should be investigated.

Originality/value

The findings of this study indicate that recoverable energy absorption is possible using negative stiffness honeycombs without sacrificing the high energy-absorbing capacity of regular honeycombs. The honeycombs can find usefulness in a number of unique applications requiring recoverable shock isolation, such as bumpers, helmets and other personal protection devices. A patent application has been filed for the negative stiffness honeycomb design.

Details

Rapid Prototyping Journal, vol. 21 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 January 2020

Jiaxing Pei, Xu Han and Yourui Tao

The purpose of this paper is to propose an simple and efficient stiffness model for line contact under elastohydrodynamic lubrication (EHL) and to investigate the gear…

Abstract

Purpose

The purpose of this paper is to propose an simple and efficient stiffness model for line contact under elastohydrodynamic lubrication (EHL) and to investigate the gear meshing stiffness by the proposed model.

Design/methodology/approach

The method combines the surface contact stiffness and film stiffness as EHL contact stiffness. The EHL contact stiffness can be calculated by the external load and displacement of the load action point. The displacement is the sum of deformation of the film and contact surface and is equal to the distance of the mutual approach of two contact bodies.

Findings

The conclusion is drawn that the contact stiffness calculated by the proposed model is smaller than that by the minimum film model and larger than that by the mean film model. It is also concluded that the gear meshing stiffness under EHL is slightly smaller than that under dry contact.

Originality/value

The EHL contact stiffness can be obtained by the increment of external load and mutual approach directly. The calculation of oil film stiffness and surface contact stiffness separately is avoided.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0465

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 May 2022

Mingwei Hu, Hongwei Sun, Liangchuang Liao and Jiajian He

The purpose of this paper is to introduce a method for stiffness modeling, identification and updating of collaborative robots (cobots). This method operates in real-time…

Abstract

Purpose

The purpose of this paper is to introduce a method for stiffness modeling, identification and updating of collaborative robots (cobots). This method operates in real-time and with high precision and can eliminate the modeling error between the actual stiffness model and the theoretical stiffness model.

Design/methodology/approach

To simultaneously ensure the computational efficiency and modeling accuracy of the stiffness model, this method introduces the finite element substructure method (FESM) into the virtual joint method (VJM). The stiffness model of the cobots is built by integrating several 6-degree of freedom virtual joints that represent the elastic deformation of the cobot modules, and the stiffness matrices of these modules can be identified and obtained by the FESM. A model-updating method is proposed to identify stiffness influence coefficients, which can eliminate the modeling error between the actual prototype model and the theoretical finite element model.

Findings

The average relative error and the cycle time of the proposed method are approximately 6.14% and 1.31 ms, respectively. Compared with other stiffness modeling methods, this method not only has high modeling accuracy in high dexterity poses but also in low dexterity poses.

Originality/value

A hybrid stiffness modeling method is introduced to integrate the modeling accuracy of the FESM into the VJM. Stiffness influence coefficients are proposed to eliminate the modeling error between the theoretical and actual stiffness models.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 May 2022

Canjun Yang, Weitao Wu, Xin Wu, Jifei Zhou, Zhangpeng Tu, Mingwei Lin and Sheng Zhang

Variable stiffness structure can significantly improve the interactive capabilities of grippers. Shape memory alloys have become a popular option for materials with…

91

Abstract

Purpose

Variable stiffness structure can significantly improve the interactive capabilities of grippers. Shape memory alloys have become a popular option for materials with variable stiffness structures. However, its variable stiffness range is limited by its stiffness in two phases. The purpose of this paper is to enhance the manipulation capabilities of tendon-driven flexible grippers by designing a wide-range variable stiffness structure.

Design/methodology/approach

Constitutive models of shape memory alloy and mechanical models are used to analyze the performance of the variable stiffness structure. A separated solution was used to combine the tendon-driven gripper and the variable stiffness structure. The feed-forward control algorithm is used to enhance the control stability of the variable stiffness structure.

Findings

The stiffness variable capability of the proposed variable stiffness structure is verified by experiments. The stability of the feedback control algorithm was verified by sinusoidal tracking experiments. The variable stiffness range of 8.41 times of the flexible gripper was tested experimentally. The interaction capability of the variable stiffness flexible gripper is verified by the object grasping experiments.

Originality/value

A new wide-range variable stiffness structure is proposed and validated. The new variable stiffness structure has a larger range of stiffness variation and better control stability. The new flexible structure can be applied to conventional grippers to help them gain stiffness variable capability and improve their interaction ability.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 February 2022

Jiaqi Zhang, Ming Cong, Dong Liu, Yu Du and Hongjiang Ma

This paper aims to get rid of the traditional basic principle of using the motor as the variable stiffness drive source, simplify the structure of the exoskeleton and…

Abstract

Purpose

This paper aims to get rid of the traditional basic principle of using the motor as the variable stiffness drive source, simplify the structure of the exoskeleton and reduce the quality of the exoskeleton. This paper proposes to use shape memory alloys (SMA) as the variable stiffness drive source.

Design/methodology/approach

In this study, SMA is used to construct the active variable stiffness unit, the Brinson constitutive model is used to establish a dynamic model to control the active variable stiffness unit and the above active variable stiffness unit is used to realize the force control function and construct a lightweight, variable stiffness knee exoskeleton.

Findings

The dynamic model constructed in this paper can preliminarily describe the phase transformation process of the active variable stiffness unit and realize the variable stiffness function of the knee exoskeleton. The variable stiffness exoskeleton can effectively reduce the driving error under the high-speed walking condition.

Originality/value

The contribution of this paper is to combine SMAs to construct an active variable stiffness unit, build a dynamic model for controlling the active variable stiffness unit and construct a lightweight, variable stiffness knee exoskeleton.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 August 2021

Gowtham Venkatraman, Adam Hehr, Leon M. Headings and Marcelo J. Dapino

Ultrasonic additive manufacturing (UAM) is a solid-state joining technology used for three-dimensional printing of metal foilstock. The electrical power input to the…

Abstract

Purpose

Ultrasonic additive manufacturing (UAM) is a solid-state joining technology used for three-dimensional printing of metal foilstock. The electrical power input to the ultrasonic welder is a key driver of part quality in UAM, but under the same process parameters, it can vary widely for different build geometries and material combinations because of mechanical compliance in the system. This study aims to model the relationship between UAM weld power and system compliance considering the workpiece (geometry and materials) and the fixture on which the build is fabricated.

Design/methodology/approach

Linear elastic finite element modeling and experimental modal analysis are used to characterize the system’s mechanical compliance, and linear system dynamics theory is used to understand the relationship between weld power and compliance. In-situ measurements of the weld power are presented for various build stiffnesses to compare model predictions with experiments.

Findings

Weld power in UAM is found to be largely determined by the mechanical compliance of the build and insensitive to foil material strength.

Originality/value

This is the first research paper to develop a predictive model relating UAM weld power and the mechanical compliance of the build over a range of foil combinations. This model is used to develop a tool to determine the process settings required to achieve a consistent weld power in builds with different stiffnesses.

Open Access
Article
Publication date: 25 October 2021

Junjie Lu

This study aims to study the gas film stiffness of the spiral groove dry gas seal.

Abstract

Purpose

This study aims to study the gas film stiffness of the spiral groove dry gas seal.

Design/methodology/approach

The present study represents the first attempt to calculate gas film stiffness in consideration of the slipping effect by using the new test technology for dry gas seals. First, a theoretical model of modified generalized Reynolds equation is derived with slipping effect of a micro gap for spiral groove gas seal. Second, the test technology examines micro-scale gas film vibration and stationary ring vibration to determine gas film stiffness by establishing a dynamic test system.

Findings

An optimum value of the spiral angle and groove depth for improved gas film stiffness is clearly seen: the spiral angle is 1.34 rad (76.8º) and the groove depth is 1 × 10–5 m. Moreover, it can be observed that optimal structural parameters can obtain higher gas film stiffness in the experiment. The average error between experiment and theory is less than 20%.

Originality/value

The present study represents the first attempt to calculate gas film stiffness in consideration of the slipping effect by using the new test technology for dry gas seals.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 October 2021

Fan Zhang, Peng Yin, Yuyang Liu and Jianmei Wang

The purpose of this paper is to study the influence of pivot stiffness on the dynamic characteristics of tilting-pad journal bearings (TPJBs) and the stability of the…

Abstract

Purpose

The purpose of this paper is to study the influence of pivot stiffness on the dynamic characteristics of tilting-pad journal bearings (TPJBs) and the stability of the bearing-rotor system.

Design/methodology/approach

A theoretical numerical model is established, and the influences of pivot stiffness on TPJBs and a bearing-rotor system are analyzed. Then, two kinds of pivot structures with different stiffness are designed and the vibration characteristics are tested on the vertical rotor bearing test bench.

Findings

The pivot stiffness has an obvious effect on the dynamic characteristics of the TPJBs and the stability of the bearing-rotor system. As a result of appropriate pivot stiffness, the critical speed and the vibration amplification factor can be reduced, the logarithmic decay rate and the stability of the rotor system can be effectively increased. While the journal whirl orbit is smoother and the rubbing is obviously reduced when the bearings have flexible pivots.

Originality/value

The influence of pivot stiffness on TPJBs and a vertical rotor-bearing system is studied by theoretical and experimental methods.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 September 2021

Xiuyun Zhu, Rong Pan, Jianbo Li and Gao Lin

In recent years, three-dimensional (3D) seismic base isolation system has been studied extensively. This paper aims to propose a new 3D combined isolation bearing (3D-CIB…

174

Abstract

Purpose

In recent years, three-dimensional (3D) seismic base isolation system has been studied extensively. This paper aims to propose a new 3D combined isolation bearing (3D-CIB) to mitigate the seismic response in both the horizontal and vertical directions.

Design/methodology/approach

The new 3D-CIB composed of laminated rubber bearing coupled with combined disk spring bearing (CDSB) was proposed. Comprehensive analysis of constitution and theoretical derivation for 3D-CIB were presented. The advantage of CDSB is that the constitution can be flexibly adjusted according to the requirements of the bearing capacity and vertical stiffness. Hence, four different combinations of CDSB were designed for the 3D-CIB and employed to isolate nuclear reactor building. A comparative study of the seismic response in terms of seismic action, acceleration floor response spectra (FRS), peak acceleration and relative displacement response was carried out.

Findings

3D-CIB can effectively reduce seismic action, FRS and peak acceleration response of the superstructure in both the horizontal and vertical directions. Overall, the horizontal isolation effectiveness of 3D-CIB was slightly influenced by vertical stiffness. The decrease in the vertical stiffness of the 3D-CIB can reduce the vertical FRS and shift the peak values to a lower frequency. The vertical peak acceleration decreased with a decrease in the vertical stiffness. The superstructure exhibited a rocking effect during the earthquake, and the decrease in the vertical stiffness may increase the rocking of the superstructure.

Originality/value

Although the advantage of 3D-CIB is that the vertical stiffness can be flexibly adjusted by different constitutions, the vertical stiffness should be designed by properly accounting for the balance between the isolation effectiveness and displacement response. This study of isolation effectiveness can provide the technical basis for the application of 3D-CIB into real engineering of nuclear power plants.

1 – 10 of over 6000