Search results

1 – 10 of 203
Article
Publication date: 7 July 2017

Mohannad Naser and Venkatesh Kodur

This paper aims to present results from numerical studies on the response of fire exposed composite girders subjected to dominant flexural and shear loading. A finite…

Abstract

Purpose

This paper aims to present results from numerical studies on the response of fire exposed composite girders subjected to dominant flexural and shear loading. A finite element-based numerical model was developed to trace the thermal and structural response of composite girders subjected to simultaneous structural loading and fire exposure. This model accounts for various critical parameters including material and geometrical nonlinearities, property degradation at elevated temperatures, shear effects, composite interaction between concrete slab and steel girder, as well as temperature-induced local buckling. To generate test data for validation of the model, three composite girders, each comprising of hot-rolled (standard) steel girder underneath a concrete slab, were tested under simultaneous fire and gravity loading.

Design/methodology/approach

The validated model was then applied to investigate the effect of initial geometric imperfections, load level, thickness of slab and stiffness of shear stud on fire response of composite girders.

Findings

Results from experimental and numerical analysis indicate that the composite girder subjected to flexural loading experience failure through flexural yielding mode, while the girders under shear loading fail through in shear web buckling mode. Further, results from parametric studies clearly infer that shear limit state can govern the response of fire exposed composite girders under certain loading configuration and fire scenario.

Originality/value

This paper presents results from numerical studies on the response of fire exposed composite girders subjected to dominant flexural and shear loading.

Details

Journal of Structural Fire Engineering, vol. 9 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 24 November 2022

Zhou Shi, Jiachang Gu, Yongcong Zhou and Ying Zhang

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder

Abstract

Purpose

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Design/methodology/approach

Based on the investigation and analysis of the development history, structure form, structural parameters, stress characteristics, shear connector stress state, force transmission mechanism, and fatigue performance, aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge, the development trend, research status, research results and existing problems are expounded.

Findings

The shear-compression composite joint has become the main form in practice, featuring shortened length and simplified structure. The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder. The reasonable thickness of the bearing plate is 40–70 mm. The calculation theory and simplified calculation formula of the overall bearing capacity, the nonuniformity and distribution laws of the shear connector, the force transferring ratio of steel and concrete components, the fatigue failure mechanism and structural parameters effects are the focus of the research study.

Originality/value

This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 7 September 2012

Michael V. Gangone, Matthew J. Whelan, Kerop D. Janoyan and Levon Minnetyan

The purpose of this paper is to further validate a wireless sensor system developed at Clarkson University for structural monitoring of highway bridges. The particular bridge…

Abstract

Purpose

The purpose of this paper is to further validate a wireless sensor system developed at Clarkson University for structural monitoring of highway bridges. The particular bridge monitored employs a fiber reinforced polymer (FRP) panel system which is fairly innovative in the field of civil engineering design. The superstructure was monitored on two separate occasions to determine a change in structural response and see how the structural system performs over time.

Design/methodology/approach

A series of wireless sensor units was deployed at various locations of the steel superstructure, to measure both the modal response from acceleration measurements as well as quasi‐static and dynamic strain response. Ambient and forced loading conditions were applied to measure the response. Data results were compared over two separate periods approximately nine months apart.

Findings

The first eight mode shapes were produced from output‐only system identification providing natural frequencies ranging from approximately 6 to 42 Hz. The strain response was monitored over two different testing periods to measure various performance characteristics. Neutral axis, distribution factor, impact factor and end fixity were determined. Results appeared to be different over the two testing periods. They indicate that the load rating of the superstructure decreased over the nine month period, possibly due to deterioration of the materials or composite action.

Research limitations/implications

The results from the two testing periods indicate that further testing needs to be completed to validate the change in response. It is difficult to say with certainty that the significant change in response is due to bridge deterioration and not other factors such as temperature effects on load rating. The sensor system, however, proved to provide high quality data and responses indicating its successful deployment for load testing and monitoring of highway infrastructure.

Originality/value

The paper provides a depiction of the change in structural behavior of a bridge superstructure using a wireless sensor system. The wireless system provided high‐rate data transmission in real time. Load testing at two different points in time, eight months apart, showed a significant change in bridge behavior. The paper provides a practical and actual physical load test and rating during these two periods for quantifiable change in response. It is shown that the wireless system is capable of infrastructure monitoring and that possible deterioration is expected with this particular bridge design. Additionally, the load testing occurred during different seasons, which could create cause for temperature effects in load rating. This can provide a basis for future performance monitoring techniques and structural health monitoring.

Article
Publication date: 7 October 2021

Lisa Choe, Selvarajah Ramesh, Xu Dai, Matthew Hoehler and Matthew Bundy

The purpose of this paper is to report the first of four planned fire experiments on the 9.1 × 6.1 m steel composite floor assembly as part of the two-story steel framed building…

Abstract

Purpose

The purpose of this paper is to report the first of four planned fire experiments on the 9.1 × 6.1 m steel composite floor assembly as part of the two-story steel framed building constructed at the National Fire Research Laboratory.

Design/methodology/approach

The fire experiment was aimed to quantify the fire resistance and behavior of full-scale steel–concrete composite floor systems commonly built in the USA. The test floor assembly, designed and constructed for the 2-h fire resistance rating, was tested to failure under a natural gas fueled compartment fire and simultaneously applied mechanical loads.

Findings

Although the protected steel beams and girders achieved matching or superior performance compared to the prescribed limits of temperatures and displacements used in standard fire testing, the composite slab developed a central breach approximately at a half of the specified rating period. A minimum area of the shrinkage reinforcement (60 mm2/m) currently permitted in the US construction practice may be insufficient to maintain structural integrity of a full-scale composite floor system under the 2-h standard fire exposure.

Originality/value

This work was the first-of-kind fire experiment conducted in the USA to study the full system-level structural performance of a composite floor system subjected to compartment fire using natural gas as fuel to mimic a standard fire environment.

Details

Journal of Structural Fire Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 June 2023

Mohammad Farhan Shaikh and Nallasivam K

In this study, a finite element model of a box-girder bridge along with the railway sub-track system is developed to predict the static behavior due to different combinations of…

83

Abstract

Purpose

In this study, a finite element model of a box-girder bridge along with the railway sub-track system is developed to predict the static behavior due to different combinations of the Indian railway system and free vibration responses resulting in different natural frequencies and their corresponding mode shapes.

Design/methodology/approach

The modeling and evaluation of the bridge and sub-track system were performed using non-closed form finite element method (FEM)-based ANSYS software.

Findings

From the analysis, the worst possible cases of deformation and stress due to different static load combinations were determined in the static analysis, while different natural frequencies were determined in the free vibrational analysis that can be used for further analysis because of the dynamic effect of the train vehicle.

Research limitations/implications

The scope of the current investigation is confined to the structure's static and free vibration analysis. However, this study will help the designers obtain relevant information for further analysis of the dynamic behavior of the bridge model.

Originality/value

In static analysis, the maximum deformation of the bridge deck was found to be 10.70E-03m due to load combination 5, whereas the maximum natural frequency for free vibration analysis is found to be 4.7626 Hz.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 June 2018

Guilherme Alencar, Gonçalo Ferreira, Abílio M.P. de Jesus and Rui Calçada

The purpose of this paper is to investigate the fatigue performance of a welded detail from a composite steel-concrete railway twin girder bridge caused by a passenger train…

Abstract

Purpose

The purpose of this paper is to investigate the fatigue performance of a welded detail from a composite steel-concrete railway twin girder bridge caused by a passenger train circulating at varying speeds, by identifying the dynamic amplification scenarios induced by resonance. For this purpose, the hotspot stress method is used, instead of the traditional nominal stress methods.

Design/methodology/approach

This paper assesses the fatigue behavior of a welded connection considering critical stress concentration locations (hotspot). Finite element analysis (FEA) is applied, utilizing both a global and a local submodel, made compatible by displacements field interpolation. The dynamic response is obtained through the modal superposition method. Stress cycles are extracted with the rainflow counting method and the fatigue damage is calculated with Palmgren-Miner’s rule. The feasibility of five submodels with different mesh densities, i.e. 1, 2, 4, 8 and 20 mm is verified.

Findings

An increase in the fatigue damage due to the resonance effect was found for the train traveling at a speed of 225 km/h. A good agreement between the computed fatigue damage for the submodels is achieved. However, a non-monotonic hotspot stress/fatigue damage vs mesh density convergence was observed with a peak observed for the 4 mm model, which endorses the mesh sensitivity that could occur when using the surface stress extrapolation detailed rules specified in the standards for the hotspot stress method.

Originality/value

Advanced dynamic analyses are proposed to obtain local stresses in order to apply a local method for the fatigue assessment of a bridge’s structure subjected to high-speed railway traffic on the basis of the mode superposition technique resulting in much less computing times.

Details

International Journal of Structural Integrity, vol. 9 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 24 November 2022

Mingxuan Xu, Tao Jin, Weihong Kong, Yazhi Li, Xing Shen, Cheng Liu and Tianyang Zhu

This study aims to assess the vibrational behavior of a large transport airship based on finite element (FE) simulation and modal testing of its scaled model.

Abstract

Purpose

This study aims to assess the vibrational behavior of a large transport airship based on finite element (FE) simulation and modal testing of its scaled model.

Design/methodology/approach

A full-size parametric FE model of the airframe was established according to the structural layout of the composite beam-cable airframe of the airship, and vibrational analysis of the airframe was conducted. The influence of cable pre-tension load on the inherent properties of the airframe was investigated. Based on the simplification of the full-size FE model, scaled numerical and test models of the airframe, with a geometric scale factor of 1:50, were established and built.

Findings

The simulation and test results of the scaled models indicated that the mode shapes of the full-size and scaled models were similar. The natural frequencies of both the full-size and scaled models complied with the theoretical similarity relation of the frequency response.

Originality/value

This study demonstrated that the vibrational test results of the scaled model with very large scaling can be used to characterize the modal properties of the beam-cable airframe of a large transport airship.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 February 2000

Richard Friedrich

This bibliography contains references to papers, conference proceedings, theses and books dealing with finite strip, finite prism and finite layer analysis of structures…

1193

Abstract

This bibliography contains references to papers, conference proceedings, theses and books dealing with finite strip, finite prism and finite layer analysis of structures, materially and/or geometrically linear or non‐linear.

Details

Engineering Computations, vol. 17 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 March 2021

Muhannad R. Alasiri and Mustafa Mahamid

Standard fire resistance curves such as ASTM E119 have been used for so long in structural fire practice. The issue with use of these curves that they do not represent real fire…

Abstract

Purpose

Standard fire resistance curves such as ASTM E119 have been used for so long in structural fire practice. The issue with use of these curves that they do not represent real fire scenarios. As a result, the alternatives have been to either conduct experiments or find other tools to represent a real fire scenario. Therefore, the purpose of this paper is to understand the temperature effects resulted from a designed fire on steel beams and whether the standard fire curves represent a designed fire scenario.

Design/methodology/approach

Computational fluid dynamics (CFD) models were developed to simulate a designed fire scenario and to understand the structural responses on the beams under elevated temperatures. Consequently, the results obtained from the CFD models were compared with the results of three-dimensional (3D) non-linear finite element (FE) models developed by other researchers. The developed FE models were executed using a standard fire curve (ASTM E119). A parametric study including two case studies was conducted.

Findings

Results obtained from performing this study showed the importance of considering fire parameters such as fuel type and flame height during the thermal analysis compared to the standard fire curves, and this might lead to a non-conservative design as compared to the designed fire scenario. The studied cases showed that the steel beams experienced more degradation in their fire resistance at higher load levels under designed fires. Additionally, the models used the standard fire curves underestimated the temperatures at the early stages.

Originality/value

This paper shows results obtained by performing a comparison study of models used ASTM E119 curve and a designed fire scenario. The value of this study is to show the variability of using different fire scenarios; thus, more studies are required to see how temperature history curves can be used to represent real fire scenarios.

Details

Journal of Structural Fire Engineering, vol. 12 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 31 August 2021

Kexin Zhang, Tianyu Qi, Dachao Li, Xingwei Xue and Zhimin Zhu

The paper aims to investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening, and health…

Abstract

Purpose

The paper aims to investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening, and health monitoring after reinforcement were carried out. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved.

Design/methodology/approach

This paper describes prestressed steel strand as a way to strengthen a 25-year-old continuous rigid frame bridge. High strength, low relaxation steel strand with high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel strand and steel plate was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on finite element model.

Findings

The cumulative upward deflection of the second span the third span was 39.7 mm, which is basically consistent with the theoretical value, and the measured value is smaller than the theoretical value. The deflection value of the second span during data acquisition was −20 mm–10 mm, which does not exceed the maximum deflection value of live load, and the deflection of the bridge is in a safe state during normal use. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

Originality/value

This paper describes prestressed steel strand as a way to strengthen a 25-year-old continuous rigid frame bridge. To investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening and health monitoring after reinforcement were carried out.

Details

International Journal of Structural Integrity, vol. 12 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 203