Search results

1 – 10 of over 9000
Article
Publication date: 22 November 2011

Shazirawati Mohd Puzi, Shaharuddin Salleh, Ruzana Ishak and Stephan Olariu

The purpose of this paper is to model an important aspect of the problem of sensor information integration that arises in wireless communications, where N sensors try to…

Abstract

Purpose

The purpose of this paper is to model an important aspect of the problem of sensor information integration that arises in wireless communications, where N sensors try to communicate with a receiver using a single un‐shareable radio channel. If several sensors transmit at the same time, their transmissions collide at the receiver resulting in garbled messages and the need for re‐transmission. This is highly undesirable since the sensors are energy‐constrained and the radio interface is known to be the most significant source of energy expenditure. Consequently, it is of paramount importance to design arbitration protocols that are highly efficient in stamping out collisions and that are, at the same time, as lightweight as possible.

Design/methodology/approach

The receiver advertises a time division multiple access (TDMA) frame consisting of n slots, numbered from 1 to n, where n is an application‐dependent parameter. Each sensor generates uniformly at random, and independently of other sensor, an integer i between 1 and n and transmits in the i‐th slot of the TDMA frame. If two or more sensors are transmitting in the same slot their messages will be lost to collision. Similarly, slots that carry no transmission are wasted. The authors model the arbitration strategy discussed above as a Bose‐Einstein occupancy problem where N indistinguishable balls are thrown at random into n distinguishable bins and all distinguishable outcomes are considered to be equally likely.

Findings

In this paper the authors present a distributed probabilistic mechanism that aims to arbitrate between several competing requests by various sensors for the radio channel. The mechanism is simple, energy‐efficient and does not rely on the existence of unique sensor identifiers (IDs).

Originality/value

The Bose‐Einstein occupancy model presented in this paper will help the receiver to tailor an appropriate number of timeslots in TDMA frame during the integration process, such that collisions are minimized, and hence integration between sensors can be done effectively.

Details

International Journal of Pervasive Computing and Communications, vol. 7 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 1 January 1992

Norbert Roth and Peter Mengel

The term “sensor integration” is used with different connotations and can be used on different levels of production. So when talking about sensor integration it should be helpful…

Abstract

The term “sensor integration” is used with different connotations and can be used on different levels of production. So when talking about sensor integration it should be helpful to distinguish between:

Details

Sensor Review, vol. 12 no. 1
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 1 June 2004

Rolf Johansson, Anders Robertsson, Klas Nilsson, Torgny Brogårdh, Per Cederberg, Magnus Olsson, Tomas Olsson and Gunnar Bolmsjö

Presents an approach to improved performance and flexibility in industrial robotics by means of sensor integration and feedback control in task‐level programming and task…

Abstract

Presents an approach to improved performance and flexibility in industrial robotics by means of sensor integration and feedback control in task‐level programming and task execution. Also presents feasibility studies in support of the ideas. Discusses some solutions to the problem using six degrees of freedom force control together with the ABB S4CPlus system as an illustrative example. Consider various problems in the design of an open sensor interface for industrial robotics and discusses possible solutions. Finally, presents experimental results from industrial force controlled grinding.

Details

Industrial Robot: An International Journal, vol. 31 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 September 1995

E.T. Powner and F. Yalcinkaya

Outlines the current research work on intelligent sensors andintelligent transducers which will be required in complex systems. Discussesthe elements of an intelligent sensor and…

506

Abstract

Outlines the current research work on intelligent sensors and intelligent transducers which will be required in complex systems. Discusses the elements of an intelligent sensor and concludes that these require analogue filtering, data conversion and compensation, and a digital communication link to a common signal bus. Explains what is meant by a systems approach to intelligent sensors with layered information processing. Concludes that unless a deeper understanding of the basics of sensor systems is acquired new intelligent sensor design will be very difficult.

Details

Sensor Review, vol. 15 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 April 1988

N Ghani

This article gives an account of ESPRIT Project 278 which aimed to create a robot system guided by visual and tactile senses.

Abstract

This article gives an account of ESPRIT Project 278 which aimed to create a robot system guided by visual and tactile senses.

Details

Sensor Review, vol. 8 no. 4
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 14 March 2024

Gülçin Baysal

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Abstract

Purpose

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Design/methodology/approach

The integration levels of the sensors studied with the textile materials are changing. Some research teams have used a combination of printing and textile technologies to produce sensors, while a group of researchers have used traditional technologies such as weaving and embroidery. Others have taken advantage of new technologies such as electro-spinning, polymerization and other techniques. In this way, they tried to combine the good working efficiency of the sensors and the flexibility of the textile. All these approaches are presented in this article.

Findings

The presentation of the latest technologies used to develop textile sensors together will give researchers an idea about new studies that can be done on highly sensitive and efficient textile-based moisture sensor systems.

Originality/value

In this paper humidity sensors have been explained in terms of measuring principle as capacitive and resistive. Then, studies conducted in the last 20 years on the textile-based humidity sensors have been presented in detail. This is a comprehensive review study that presents the latest developments together in this area for researchers.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 July 2021

Anish Banerjee and R. Ramesh Nayaka

The purpose of this paper is to investigate building information modelling (BIM) integrated Internet of Things (IoT) architectures extensively and provide comparative evaluation…

Abstract

Purpose

The purpose of this paper is to investigate building information modelling (BIM) integrated Internet of Things (IoT) architectures extensively and provide comparative evaluation of those against deciding parameters pertaining to their characteristics and subsequent applications in construction industry.

Design/methodology/approach

This paper identifies BIM-integrated cyber physical system frameworks, specific to project objectives, comprising of sensors working as physical assets and BIM-based virtual models acting as the cyber component , connected via wired or wireless protocols (e.g. WiFi, Zigbee, near-field communication, mobile-to-mobile, Zwave, 3 G, 4 G, long-term evolution, 5 G and low-power wide-area networks) and their potential applications in decision-making, visual management, logistics and supply chain management, smart building system management and structural performance assessment, etc. Such proposed architectures are evaluated against deciding parameters such as availability, reliability, mobility, performance, management, scalability, interoperability and security and privacy to evaluate their respective efficiencies.

Findings

This study finds that the underlying aim of planned IoT frameworks is to integrate systems and processes for a better information flow and to initiate shift from silo solutions to a smart ecosystem. The efficiencies of such frameworks are completely subjective to their respective project natures, objectives and requirements.

Originality/value

This study is unique in its nature to identify requirements of an efficient BIM-integrated IoT architecture and provide comprehensive insights about potential applications in construction industry.

Article
Publication date: 22 March 2023

Qi Jiang, Jihua Li and Danish Masood

With the increasing development of the surgical robots, the opto-mechatronic technologies are more potential in the robotics system optimization. The optic signal plays an…

Abstract

Purpose

With the increasing development of the surgical robots, the opto-mechatronic technologies are more potential in the robotics system optimization. The optic signal plays an important role in opto-mechatronic systems. This paper aims to present a review of the research status on fiber-optic-based force and shape sensors in surgical robots.

Design/methodology/approach

Advances of fiber-optic-based force and shape sensing techniques in the past 20 years are investigated and summarized according to different surgical requirement and technical characteristics. The research status analysis and development prospects are discussed.

Findings

Compared with traditional electrical signal conduction, the phototransduction provides higher speed transmission, lower signal loss and the immunity to electromagnetic interference in robot perception. Most importantly, more and more advanced optic-based sensing technologies are applied to medical robots in the past two decades because the prominence is magnetic resonance imaging compatibility. For medical robots especially, fiber-optic sensing technologies can improve working security, manipulating accuracy and provide force and shape feedback to surgeon.

Originality/value

This is a new perspective. This paper mainly researches the application of optical fiber sensor according to different surgeries which is beneficial to learn the great potential of optical fiber sensor in surgical robots. By enumerating the research progress of medical robots in optimization design, multimode sensing and advanced materials, the development tendency of fiber-optic-based force and shape sensing technologies in surgical robots is prospected.

Details

Sensor Review, vol. 43 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 July 2021

Vishal Ashok Wankhede and Vinodh S.

The purpose of this paper is to develop a model based on the total interpretive structural modeling (TISM) approach for analysis of factors of additive manufacturing (AM) and…

Abstract

Purpose

The purpose of this paper is to develop a model based on the total interpretive structural modeling (TISM) approach for analysis of factors of additive manufacturing (AM) and industry 4.0 (I4.0) integration.

Design/methodology/approach

AM integration with I4.0 is attributed due to various reasons such as developing complex shapes with good quality, real-time data analysis, augmented reality and decentralized production. To enable the integration of AM and I4.0, a structural model is to be developed. TISM technique is used as a solution methodology. TISM approach supports establishing a contextual relationship-based structural model to recognize the influential factors. Cross-impact matrix multiplication applied to classification (MICMAC) analysis has been used to validate the TISM model and to explore the driving and dependence power of each factor.

Findings

The derived structural model indicated the dominant factors to be focused on. Dominant factors include sensor integration (F9), resolution (F12), small build volumes (F19), internet of things and lead time (F14). MICMAC analysis showed the number of driving, dependent, linkage and autonomous factors as 3, 2, 12 and 3, respectively.

Research limitations/implications

In the present study, 20 factors are considered. In the future, additional factors could be considered based on advancements in I4.0 technologies.

Practical implications

The study has practical relevance as it had been conducted based on inputs from industry practitioners. The industry decision-makers and practitioners may use the developed TISM model to understand the inter-relationship among the factors to take appropriate measures before adoption.

Originality/value

The study on developing a structural model for analysis of factors influencing AM and I4.0 is the original contribution of the authors.

Article
Publication date: 15 April 2024

Zhaozhao Tang, Wenyan Wu, Po Yang, Jingting Luo, Chen Fu, Jing-Cheng Han, Yang Zhou, Linlin Wang, Yingju Wu and Yuefei Huang

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However…

Abstract

Purpose

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However, stability has been one of the key issues which have limited their effective commercial applications. To fully understand this challenge of operation stability, this paper aims to systematically review mechanisms, stability issues and future challenges of SAW sensors for various applications.

Design/methodology/approach

This review paper starts with different types of SAWs, advantages and disadvantages of different types of SAW sensors and then the stability issues of SAW sensors. Subsequently, recent efforts made by researchers for improving working stability of SAW sensors are reviewed. Finally, it discusses the existing challenges and future prospects of SAW sensors in the rapidly growing Internet of Things-enabled application market.

Findings

A large number of scientific articles related to SAW technologies were found, and a number of opportunities for future researchers were identified. Over the past 20 years, SAW-related research has gained a growing interest of researchers. SAW sensors have attracted more and more researchers worldwide over the years, but the research topics of SAW sensor stability only own an extremely poor percentage in the total researc topics of SAWs or SAW sensors.

Originality/value

Although SAW sensors have been attracting researchers worldwide for decades, researchers mainly focused on the new materials and design strategies for SAW sensors to achieve good sensitivity and selectivity, and little work can be found on the stability issues of SAW sensors, which are so important for SAW sensor industries and one of the key factors to be mature products. Therefore, this paper systematically reviewed the SAW sensors from their fundamental mechanisms to stability issues and indicated their future challenges for various applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 9000