Search results

1 – 10 of 571
Article
Publication date: 7 August 2017

Quanquan Liu, Chaoyang Shi, Bo Zhang, Chunbao Wang, Lihong Duan, Tongyang Sun, Xin Zhang, Weiguang Li, Zhengzhi Wu and Masakatsu G. Fujie

Paediatric congenital esophageal atresia surgery typically requires delicate and dexterous operations in a narrow and confined workspace. This study aims to develop a novel robot

Abstract

Purpose

Paediatric congenital esophageal atresia surgery typically requires delicate and dexterous operations in a narrow and confined workspace. This study aims to develop a novel robot assisted surgical system to address these challenges.

Design/methodology/approach

The proposed surgical robot consists of two symmetrical slave arms with nine degree of freedoms each. Each slave arm uses a rigid-dexterous configuration and consists of a coarse positioning manipulator and a distal fine operation manipulator. A small Selective Compliance Assembly Robot Arm (SCARA) mechanism was designed to form the main component of the coarse positioning unit, ensuring to endure large forces along the vertical direction and meet the operational demands. The fine positioning manipulator applied the novel design using flexible shafts and universal joints to achieve delicate operations while possessing a high rigidity. The corresponding kinematics has been derived and then was validated by a co-simulation that was performed based on the combined use of Adams and MATLAB with considering the real robot mass information. Experimental evaluations for the tip positioning accuracy and the ring transfer tasks have been performed.

Findings

The simulation was performed to verify the correctness of the derived inverse kinematics and demonstrated the robot’s flexibility. The experimental results illustrated that the end-effector can achieve a positioning accuracy within 1.5 mm in a confined 30 × 30 × 30 mm workspace. The ring transfer task demonstrated that the surgical robot is capable of providing a solution for dexterous tissue intervention in a narrow workspace for paediatric surgery.

Originality/value

A novel and compact surgical assist robot is developed to support delicate operations by using the dexterous slave arm. The slave arm consists of a SCARA mechanism to avoid experiencing overload in the vertical direction and a tool manipulator driven by flexible shafts and universal joints to provide high dexterity for operating in a narrow workspace.

Article
Publication date: 11 May 2022

Hang Su, Wen Qi, Yunus Schmirander, Salih Ertug Ovur, Shuting Cai and Xiaoming Xiong

The purpose of this paper is to develop a human activity-aware adaptive shared control solution for human–robot interaction in surgical operation. Hands-on control and…

Abstract

Purpose

The purpose of this paper is to develop a human activity-aware adaptive shared control solution for human–robot interaction in surgical operation. Hands-on control and teleoperation are two main procedures switched frequently in teleoperated minimally invasive surgery (MIS). The detailed human activity in the procedures can be defined and recognized using the sensor information. In this paper, a novel continuous adaptive shared control method is proposed for manipulators with Cartesian impedance control in the surgical scenario.

Design/methodology/approach

A human activity-aware shared control solution by adjusting the weight function is introduced to achieve smooth transition among different human activities, including hands-on control and teleoperation. Instead of introducing various controllers and switching among them during the surgical procedures, the proposed solution integrated all the human activity-based controllers into a single controller and the transition among the procedures is smooth and stable. The effectiveness of the proposed control approach was verified in a lab setup environment. The results prove that the robot behavior is stable and smooth. The algorithm is feasible and can achieve a human activity-aware adaptive shared control solution for human–robot interaction in surgical operation.

Findings

Based on the experiment, the results confirm that the proposed human activity-aware adaptive shared control solution can switch the device behavior automatically using the real-time sensor information. The transition between different activities is smooth and stable.

Practical implications

For teleoperated surgical applications, the proposed method integrated different controllers for various human activities into a single controller by recognizing the activities using the real-time sensor information and the transition between different procedures is smooth and stable. It eases the surgical work for the surgeon and enhances the safety during the transition of control modes. The presented scheme provides a general solution to address the switching of working procedures in teleoperated MIS.

Originality/value

To the best of the authors’ knowledge, this paper is the first to propose human activity-aware adaptive shared control solution for human–robot interaction in surgical operations.

Details

Assembly Automation, vol. 42 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 February 2022

Tao Song, Bo Pan, Guojun Niu and Yili Fu

This study aims to represent a novel closed-form solutions method based on the product of the exponential model to solve the inverse kinematics of a robotic manipulator. In…

109

Abstract

Purpose

This study aims to represent a novel closed-form solutions method based on the product of the exponential model to solve the inverse kinematics of a robotic manipulator. In addition, this method is applied to master–slave control of the minimally invasive surgical (MIS) robot.

Design/methodology/approach

For MIS robotic inverse kinematics, the closed-form solutions based on the product of the exponential model of manipulators are divided into the RRR and RRT subproblems. Geometric and algebraic constraints are used as preconditions to solve two subproblems. In addition, several important coordinate systems are established on the surgical robot and master–slave mapping strategies are illustrated in detail. Finally, the MIS robot can realize master–slave control by combining closed-form solutions and master–slave mapping strategy.

Findings

The simulation of the instrument manipulator based on the RRR and RRT subproblems is executed to verify the correctness of the proposed closed-form solutions. The fact that the accuracy of the closed-form solutions is better than that of the compensation method is validated by the contrastive linear trajectory experiment, and the average and the maximum tracking errors are 0.1388 mm and 0.3047 mm, respectively. In the animal experiment, the average and maximum tracking error of the left instrument manipulator are 0.2192 mm and 0.4987 mm, whereas the average and maximum tracking error of the right instrument manipulator are 0.1885 mm and 0.6933 mm. The successful completion of the animal experiment comprehensively demonstrated the feasibility and reliability of the master–slave control strategy based on the novel closed-form solutions.

Originality/value

The proposed closed-form solutions are error-free in theory. The master–slave control strategy is not affected by calculation error when the closed-form solutions are used in the surgical robot. And the accuracy and reliability of the master–slave control strategy are greatly improved.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 December 2004

A.M. Okamura

Teleoperated minimally invasive surgical robots can significantly enhance a surgeon's accuracy, dexterity and visualization. However, current commercially available systems do not…

10149

Abstract

Teleoperated minimally invasive surgical robots can significantly enhance a surgeon's accuracy, dexterity and visualization. However, current commercially available systems do not include significant haptic (force and tactile) feedback to the operator. This paper describes experiments to characterize this problem, as well as several methods to provide haptic feedback in order to improve surgeon's performance. There exist a variety of sensing and control methods that enable haptic feedback, although a number of practical considerations, e.g. cost, complexity and biocompatibility, present significant challenges. The ability of teleoperated robot‐assisted surgical systems to measure and display haptic information leads to a number of additional exciting clinical and scientific opportunities, such as active operator assistance through “virtual fixtures” and the automatic acquisition of tissue properties.

Details

Industrial Robot: An International Journal, vol. 31 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 August 2017

Weibang Bai, Qixin Cao, Pengfei Wang, Peng Chen, Chuntao Leng and Tiewen Pan

Robotic systems for laparoscopic minimally invasive surgery (MIS) always end up with highly sophisticated mechanisms and control schemes – making it a long and hard development…

Abstract

Purpose

Robotic systems for laparoscopic minimally invasive surgery (MIS) always end up with highly sophisticated mechanisms and control schemes – making it a long and hard development process with a steep price. This paper aims to propose and realize a new, efficient and convenient strategy for building effective control systems for surgical and even other complex robotic systems.

Design/methodology/approach

A novel method that takes advantage of the modularization concept by integrating two middleware technologies (robot operating system and robotic technology middleware) into a common architecture based on the strengths of both was designed and developed.

Findings

Tests of the developed control system showed very low time-delay between the master and slave sides; good movement representation on the slave manipulator; and high positional and operational accuracy. Moreover, the new development strategy trial came with much higher efficiency and lower costs.

Research limitations/implications

This method results in a modularized and distributed control system that is amenable to collaboratively develop; convenient to modify and update; componentized and easy to extend; mutually independent among subsystems; and practicable to be running and communicating across multiple operating systems. However, experiments show that surgical training and updates of the robotic system are still required to achieve better proficiency for completing complex minimally invasive surgical operations with the proposed and developed system.

Originality/value

This research proposed and developed a novel modularization design method and a novel architecture for building a distributed teleoperation control system for laparoscopic MIS.

Details

Industrial Robot: An International Journal, vol. 44 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 August 2016

Joanne Pransky

The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot journal as a method to impart the combined technological, business and personal…

Abstract

Purpose

The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry engineer-turned-entrepreneur regarding the evolution, commercialization and challenges of bringing a technological invention to market. The paper aims to discuss these issues.

Design/methodology/approach

The interviewee is Jacob Rosen, a Professor of Medical Robotics at the Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), where he directs the Bionics Lab. Professor Rosen is also the Director of Surgical Robotics Engineering at the UCLA School of Medicine’s Center for Advanced Surgical and Interventional Technology and has joint appointments at UCLA’s Department of Surgery and UCLA’s Department of Bioengineering. Professor Rosen is the co-founder of the companies Applied Dexterity, ExoSense and SPI. As a pioneer in medical robotics devices and technologies, Professor Rosen describes his unique approaches and philosophies.

Findings

Dr Rosen received his BSc degree in Mechanical Engineering, MSc and PhD degrees in Biomedical Engineering from Tel-Aviv University in 1987, 1993 and 1997, respectively. From 1987 to 1992, he served as an officer in the Israeli Defense Forces studying human–machine interfaces. From 1993 to 1997, he was a research associate at Tel-Aviv University, as well as held a position at a startup company developing innovative orthopedic spine/pelvis implants. From 2001-2013, he held faculty positions at the University of Washington and at University of California, Santa Cruz.

Originality/value

Dr Rosen developed several key systems in the field of medical robotics, such as the Blue and the Red Dragon, for minimally invasive surgical skill evaluation; RAVEN, a surgical robotic system for telesurgery; and several generations of upper and lower limb exoskeletons including the Exo-UL7 – a dual arm wearable robotic system. He is a co-author of 100 manuscripts in the field of medical robotics and a co-author and co-editor of two books entitled “Surgical Robotics – Systems, Applications, and Visions” and “Redundancy in Robot Manipulators and Multi-robot systems” published by Springer. Professor Rosen has filed eight different patent applications and also works as an expert witness and consultant on design, patent protection & litigation and malpractice regarding surgical robotics.

Details

Industrial Robot: An International Journal, vol. 43 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 January 2011

Richard Bloss

The purpose of this paper is to review the progress that one innovative firm is making in the development and deployment of robots to actually perform surgery on humans with a…

Abstract

Purpose

The purpose of this paper is to review the progress that one innovative firm is making in the development and deployment of robots to actually perform surgery on humans with a doctor's guidance.

Design/methodology/approach

Detailed dialog with the development team for the da Vinci® Surgical System at Intuitive Surgical and with several medical institutions that have deployed the system.

Findings

The success of applying robotic technology to surgery only confirms that human activity and automation are ever closer bound together. The robot provides surgical advantages such as improved visualization, precision of movement, range of movement, ergonomics, and dexterity, and often times better procedure outcomes.

Practical implications

Medical technology can be improved by the linking surgeons with robotics. Surgery joins other once thought of as human only activities, such as reading books, filling orders, etc. which can be improved with robotics.

Originality/value

Other hospitals may find the innovation and success of robotic surgery to be of value to their medical services menu.

Details

Industrial Robot: An International Journal, vol. 38 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 July 2021

Joanne Pransky

The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal…

Abstract

Purpose

The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD and innovator regarding his pioneering efforts. The paper aims to discuss these issues.

Design/methodology/approach

The interviewee is Dr Nabil Simaan, Professor of Mechanical Engineering, Computer Science and Otolaryngology at Vanderbilt University. He is also director of Vanderbilt’s Advanced Robotics and Mechanism Applications Research Laboratory. In this interview, Simaan shares his unique perspective and approaches on his journey of trying to solve real-world problems in the medical robotics area.

Findings

Simaan received his BSc, MSc and PhD in mechanical engineering from the Technion – Israel Institute of Technology. He served as Postdoctoral Research Scientist in Computer Science at Johns Hopkins University. In 2005, he joined Columbia University, New York, NY, as an Assistant Professor of Mechanical Engineering until 2010, when he joined Vanderbilt. His current applied research interests include synthesis of novel robotic systems for surgical assistance in confined spaces with applications to minimally invasive surgery of the throat, natural orifice surgery, cochlear implant surgery and dexterous bimanual microsurgery. Theoretical aspects of his research include robot design and kinematics.

Originality/value

Dr Simaan is a leading pioneer on designing robotic systems and mechanisms for medical applications. Examples include technologies for snake robots licensed to Intuitive Surgical; technologies for micro-surgery of the retina, which led to the formation of AURIS Surgical Robotics; the insertable robotic effector platform (IREP) single-port surgery robot that served as the research prototype behind the Titan Medical Inc. Sport (Single Port Orifice Robotic Technology). Simaan received the NSF Career award for young investigators to design new algorithms and robots for safe interaction with the anatomy. He has served as the Editor for IEEE International Conference on Robotics and Automation, Associate Editor for IEEE Transactions on Robotics, Editorial Board Member of Robotica, Area Chair for Robotics Science and Systems and corresponding Co-chair for the IEEE Technical Committee on Surgical Robotics. In January 2020, he was bestowed the award of Institute of Electrical and Electronics Engineers (IEEE) Fellow for Robotics Advancements. At the end of 2020, he was named a top voice in health-care robotics by technology discovery platform InsightMonk and market intelligence firm BIS Research. Simaan holds 15 patents. A producer of human capital, his education goal is to achieve the best possible outcome with every student he works with.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 January 2009

Jongwon Lee, Inwook Hwang, Keehoon Kim, Seungmoon Choi, Wan Kyun Chung and Young Soo Kim

The purpose of this paper is to present a surgical robot for spinal fusion and its control framework that provides higher operation accuracy, greater flexibility of robot position…

Abstract

Purpose

The purpose of this paper is to present a surgical robot for spinal fusion and its control framework that provides higher operation accuracy, greater flexibility of robot position control, and improved ergonomics.

Design/methodology/approach

A human‐guided robot for the spinal fusion surgery has been developed with a dexterous end‐effector that is capable of high‐speed drilling for cortical layer gimleting and tele‐operated insertion of screws into the vertebrae. The end‐effector is position‐controlled by a five degrees‐of‐freedom robot body that has a kinematically closed structure to withstand strong reaction force occurring in the surgery. The robot also allows the surgeon to control cooperatively the position and orientation of the end‐effector in order to provide maximum flexibility in exploiting his or her expertise. Also incorporated for improved safety is a “drill‐by‐wire” mechanism wherein a screw is tele‐drilled by the surgeon in a mechanically decoupled master/slave system. Finally, a torque‐rendering algorithm that adds synthetic open‐loop high‐frequency components on feedback torque increases the realism of tele‐drilling in the screw‐by‐wire mechanism.

Findings

Experimental results indicated that this assistive robot for spinal fusion performs drilling tasks within the static regulation errors less than 0.1 μm for position control and less than 0.05° for orientation control. The users of the tele‐drilling reported subjectively that they experienced torque feedback similar to that of direct screw insertion.

Research limitations/implications

Although the robotic surgery system itself has been developed, integration with surgery planning and tracking systems is ongoing. Thus, the screw insertion accuracy of a whole surgery system with the assistive robot is to be investigated in the near future.

Originality/value

The paper arguably pioneers the dexterous end‐effector appropriately designed for spinal fusion, the cooperative robot position‐control algorithm, the screw‐by‐wire mechanism for indirect screw insertion, and the torque‐rendering algorithm for more realistic torque feedback. In particular, the system has the potential of circumventing the screw‐loosening problem, a common defect in the conventional surgeon‐operated or robot‐assisted spinal fusion surgery.

Details

Industrial Robot: An International Journal, vol. 36 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 October 2015

Carlos Eduardo Díaz, Roemi Fernández, Manuel Armada and Felipe de Jesús García Gutiérrez

– This paper aims to provide an insight into recent advancements and developments of robotics for Natural Orifice Transluminal Surgery (NOTES) procedures.

Abstract

Purpose

This paper aims to provide an insight into recent advancements and developments of robotics for Natural Orifice Transluminal Surgery (NOTES) procedures.

Design/methodology/approach

Following an introduction that highlights the evolution from Minimally Invasive Surgery (MIS) to NOTES in the medical field, this paper reviews the main robotics systems that have been designed and implemented for MIS and NOTES, summarising their advantages and limitations and remarking the technological challenges and the requirements that still should be addressed and fulfilled.

Findings

The state-of-the-art presented in this paper shows that the majority of the platforms created for NOTES are laboratory prototypes, and their performances are still far from being optimal. New solutions are required to solve the problems confronted by the proposed systems such as the limited number of DOFs, the limited resolution, the optimal fixation and stiffening of the instruments for enabling stable and precise operation, the effective transmission of forces to the tip tools, the improvement of the force feedback feeling and the proper visualization and spatial orientation of the surgical field. Advances in robotics can contribute significantly to the development and future implementation of the NOTES procedure.

Originality/value

This paper highlights the current trends and challenges ahead in robotics applied to NOTES procedure.

Details

Industrial Robot: An International Journal, vol. 42 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 571