Search results

1 – 10 of 13
Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 26 March 2024

Daniel Nygaard Ege, Pasi Aalto and Martin Steinert

This study was conducted to address the methodical shortcomings and high associated cost of understanding the use of new, poorly understood architectural spaces, such as…

Abstract

Purpose

This study was conducted to address the methodical shortcomings and high associated cost of understanding the use of new, poorly understood architectural spaces, such as makerspaces. The proposed quantified method of enhancing current post-occupancy evaluation (POE) practices aims to provide architects, engineers and building professionals with accessible and intuitive data that can be used to conduct comparative studies of spatial changes, understand changes over time (such as those resulting from COVID-19) and verify design intentions after construction through a quantified post-occupancy evaluation.

Design/methodology/approach

In this study, we demonstrate the use of ultra-wideband (UWB) technology to gather, analyze and visualize quantified data showing interactions between people, spaces and objects. The experiment was conducted in a makerspace over a four-day hackathon event with a team of four actively tracked participants.

Findings

The study shows that by moving beyond simply counting people in a space, a more nuanced pattern of interactions can be discovered, documented and analyzed. The ability to automatically visualize findings intuitively in 3D aids architects and visual thinkers to easily grasp the essence of interactions with minimal effort.

Originality/value

By providing a method for better understanding the spatial and temporal interactions between people, objects and spaces, our approach provides valuable feedback in POE. Specifically, our approach aids practitioners in comparing spaces, verifying design intent and speeding up knowledge building when developing new architectural spaces, such as makerspaces.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 22 March 2024

Geming Zhang, Lin Yang and Wenxiang Jiang

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is…

Abstract

Purpose

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is based on P-wave earthquake early-warning and multiple ways of rapid treatment.

Design/methodology/approach

The paper describes the key technologies that are involved in the development of the system, such as P-wave identification and earthquake early-warning, multi-source seismic information fusion and earthquake emergency treatment technologies. The paper also presents the test results of the system, which show that it has complete functions and its major performance indicators meet the design requirements.

Findings

The study demonstrates that the high speed railways earthquake early-warning system serves as an important technical tool for high speed railways to cope with the threat of earthquake to the operation safety. The key technical indicators of the system have excellent performance: The first report time of the P-wave is less than three seconds. From the first arrival of P-wave to the beginning of train braking, the total delay of onboard emergency treatment is 3.63 seconds under 95% probability. The average total delay for power failures triggered by substations is 3.3 seconds.

Originality/value

The paper provides a valuable reference for the research and development of earthquake early-warning system for high speed railways in other countries and regions. It also contributes to the earthquake prevention and disaster reduction efforts.

Open Access
Article
Publication date: 16 August 2023

Matthew Ikuabe, Clinton Aigbavboa, Chimay Anumba and Ayodeji Emmanuel Oke

Through its advanced computational capabilities, cyber–physical systems (CPS) proffer solutions to some of the cultural challenges plaguing the effective delivery of facilities…

Abstract

Purpose

Through its advanced computational capabilities, cyber–physical systems (CPS) proffer solutions to some of the cultural challenges plaguing the effective delivery of facilities management (FM) mandates. This study aims to explore the drivers for the uptake of CPS for FM functions using a qualitative approach – the Delphi technique.

Design/methodology/approach

Using the Delphi technique, the study selected experts through a well-defined process entailing a pre-determined set of criteria. The experts gave their opinions in two iterations which were subjected to statistical analyses such as the measure of central tendency and interquartile deviation in ascertaining consensus among the experts and the Mann–Whitney U test in establishing if there is a difference in the opinions given by the experts.

Findings

The study’s findings show that six of the identified drivers of the uptake of CPS for FM were attributed to be of very high significance, while 12 were of high significance. Furthermore, it was revealed that there is no significant statistical difference in the opinions given by experts in professional practice and academia.

Practical implications

The study’s outcome provides the requisite insight into the propelling measures for the uptake of CPS for FM by organisations and, by extension, aiding digital transformation for effective FM delivery.

Originality/value

To the best of the authors’ knowledge, evidence from the literature suggests that no study has showcased the drivers of the incorporation of CPS for FM. Hence, this study fills this gap in knowledge by unravelling the significant propelling measures of the integration of CPS for FM functions.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 24 August 2023

Andrew Ebekozien, Wellington Didibhuku Thwala, Clinton Ohis Aigbavboa and Mohamad Shaharudin Samsurijan

Studies showed that construction digitalisation could prevent or mitigate accidents rate on sites. Digitalisation applications may prevent or mitigate building project collapse…

Abstract

Purpose

Studies showed that construction digitalisation could prevent or mitigate accidents rate on sites. Digitalisation applications may prevent or mitigate building project collapse (BPC) but with some encumbrances, especially in developing countries. There is a paucity of research on digital technologies application to prevent or mitigate BPC in Nigeria. Thus, the research aims to explore the perceived barriers that may hinder digital technologies from preventing or mitigating building collapse and recommend measures to improve technology applications during development.

Design/methodology/approach

The study is exploratory because of the unexplored approach. The researchers collected data from knowledgeable participants in digitalisation and building collapse in Nigeria. The research employed a phenomenology approach and analysed collected data via a thematic approach. The study achieved saturation at the 29th interviewee.

Findings

Findings show that lax construction digitalisation implementation, absence of regulatory framework, lax policy, unsafe fieldworkers' behaviours, absence of basic infrastructure, government attitude, hesitation to implement and high technology budget, especially in developing countries, are threats to curbing building collapse menace via digitalisation. The study identified technologies relevant to preventing or mitigating building collapse. Also, it proffered measures to prevent or mitigate building collapse via improved digital technology applications during development.

Originality/value

This research contributes to the construction digitalisation literature, especially in developing countries, and investigates the perceived barriers that may hinder digital technologies usage in preventing or mitigating building collapse in Nigeria.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 26 July 2023

Sivarajah Rajumesh

The study aims to explore the overall growth trend, top publishing countries, co-authorship and author keywords in the field of Industry 5.0.

1399

Abstract

Purpose

The study aims to explore the overall growth trend, top publishing countries, co-authorship and author keywords in the field of Industry 5.0.

Design/methodology/approach

This study presents the outcomes of a bibliometric analysis conducted using VOSviewer software. The analysis retrieved data from the Scopus database, including citations, co-authors, keywords, bibliometric coupling and co-occurrence.

Findings

The findings reveal a significant increase in publications and citations related to Industry 5.0 in recent years. China, the USA and India emerge as the leading countries driving research in this field. The co-authorship analysis indicates limited collaboration among authors, with only 48 out of 354 authors being linked through co-authorship. Through co-occurrence analysis, the investigation identifies the most frequently occurring keywords in the research, with “Industry 5.0” and “Industry 4.0” being the most frequently co-occurring keywords. The bibliographic coupling analysis identifies six clusters of research themes.

Research limitations/implications

The study solely relies on data gathered from the Scopus database for analysis on a specific date. Therefore, data from other databases collected at different times may yield different observations and findings.

Practical implications

This study enhances the knowledge of professionals and academia in Industry 5.0, enabling the professionals to efficiently and sustainably manage the sector.

Originality/value

The bibliometric analysis presented in this study provides valuable insights into the contributions made by authors, keywords and co-authors to the field of Industry 5.0. Additionally, the thematic analysis summarized in this study is a novel contribution to the field.

Details

Journal of Business and Socio-economic Development, vol. 4 no. 2
Type: Research Article
ISSN: 2635-1374

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 13 February 2024

Nicola Cobelli and Silvia Blasi

This paper explores the Adoption of Technological Innovation (ATI) in the healthcare industry. It investigates how the literature has evolved, and what are the emerging innovation…

Abstract

Purpose

This paper explores the Adoption of Technological Innovation (ATI) in the healthcare industry. It investigates how the literature has evolved, and what are the emerging innovation dimensions in the healthcare industry adoption studies.

Design/methodology/approach

We followed a mixed-method approach combining bibliometric methods and topic modeling, with 57 papers being deeply analyzed.

Findings

Our results identify three latent topics. The first one is related to the digitalization in healthcare with a specific focus on the COVID-19 pandemic. The second one groups up the word combinations dealing with the research models and their constructs. The third one refers to the healthcare systems/professionals and their resistance to ATI.

Research limitations/implications

The study’s sample selection focused on scientific journals included in the Academic Journal Guide and in the FT Research Rank. However, the paper identifies trends that offer managerial insights for stakeholders in the healthcare industry.

Practical implications

ATI has the potential to revolutionize the health service delivery system and to decentralize services traditionally provided in hospitals or medical centers. All this would contribute to a reduction in waiting lists and the provision of proximity services.

Originality/value

The originality of the paper lies in the combination of two methods: bibliometric analysis and topic modeling. This approach allowed us to understand the ATI evolutions in the healthcare industry.

Details

European Journal of Innovation Management, vol. 27 no. 9
Type: Research Article
ISSN: 1460-1060

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Only content I have access to

Year

Last month (13)

Content type

1 – 10 of 13