Search results

1 – 10 of 23
Article
Publication date: 24 June 2022

Lan Chu, Chao Guo, Qing Zhang, Qing Wang, Yiwen Ge, Mingyang Hao and Jungang Lv

This study aims to using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and scanning electron microscope/energy dispersive Xray spectrometer to identify…

Abstract

Purpose

This study aims to using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and scanning electron microscope/energy dispersive Xray spectrometer to identify different automotive coatings for forensic purpose.

Design/methodology/approach

Two four-layered samples in a hit-and-run case were compared layer by layer with three different methods. FTIR spectroscopy was used to primarily identify the organic and inorganic compositions. Raman spectrum and scanning electron microscope/energy dispersive Xray spectrometer (SEM-EDS) were further used to complement the FTIR results.

Findings

Two weak and tiny peaks in one layer found between two samples by FTIR, Raman microscope and SEM-EDS verified the result of differences. The study used the three instruments in combination and found it’s effective in sensing coatings, especially in the inorganic additives.

Research limitations/implications

Using these three instruments in combination is more accurate than individually in multilayered coating analysis for forensic purpose.

Practical implications

The three different instruments all present unique information on the composition, and provided similar and mutually verifiable results on the two samples.

Originality/value

With this method, scientists could identify and discriminate important coating evidences with tiny but characteristic differences.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 December 2023

Yingying Li, Lanlan Liu, Jun Wang, Song Xu, Hui Su, Yi Xie and Tangqing Wu

The purpose of this paper is to study the corrosion behavior of Q235 steel in saturated acidic red and yellow soils.

Abstract

Purpose

The purpose of this paper is to study the corrosion behavior of Q235 steel in saturated acidic red and yellow soils.

Design/methodology/approach

The corrosion behavior of Q235 steel in saturated red and yellow soils was compared by weight-loss, SEM/EDS, 3D ultra-depth microscopy and electrochemical measurements.

Findings

Rp of the steel gradually increases and icorr gradually decreases in both the red and yellow soils with time. The Rp of the steel in the red soil is lower, but its icorr is higher than that in the yellow soil. The uniform corrosion rate, diameter and density of the corrosion pit on the steel surface in the red soil are greater than those in the yellow soil. Lower pH, higher contents of corrosive anions and high-valence Fe oxides in the red soil are responsible for its higher corrosion rates and local corrosion susceptibility.

Originality/value

This paper investigates the difference in corrosion behavior of carbon steel in saturated acidic red and yellow soils, which can help to understand the mechanism of soil corrosion.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 10 October 2023

Xiao He, Lijuan Huang, Meizhen Xiao, Chengyong Yu, En Li and Weiheng Shao

The purpose of this paper is to illustrate the new technical demands and reliability challenges to printed circuit board (PCB) designs, materials and processes when the…

Abstract

Purpose

The purpose of this paper is to illustrate the new technical demands and reliability challenges to printed circuit board (PCB) designs, materials and processes when the transmission frequency increases from Sub-6 GHz in previous generations to millimeter (mm) wave in fifth-generation (5G) communication technology.

Design/methodology/approach

The approach involves theoretical analysis and actual case study by various characterization techniques, such as a stereo microscope, metallographic microscope, scanning electron microscope, energy dispersive spectroscopy, focused ion beam, high-frequency structure simulator, stripline resonator and mechanical test.

Findings

To meet PCB signal integrity demands in mm-wave frequency bands, the improving proposals on copper profile, resin system, reinforcement fabric, filler, electromagnetic interference-reducing design, transmission line as well as via layout, surface treatment, drilling, desmear, laminating and electroplating were discussed. And the failure causes and effects of typical reliability issues, including complex permittivity fluctuation at different frequencies or environments, weakening of peel strength, conductive anodic filament, crack on microvias, the effect of solder joint void on signal transmission performance and soldering anomalies at ball grid array location on high-speed PCBs, were demonstrated.

Originality/value

The PCB reliability problem is the leading factor to cause failures of PCB assemblies concluded from statistical results on the failure cases sent to our laboratory. The PCB reliability level is very essential to guarantee the reliability of the entire equipment. In this paper, the summarized technical demands and reliability issues that are rarely reported in existing articles were discussed systematically with new perspectives, which will be very critical to identify potential reliability risks for PCB in 5G mm-wave applications and implement targeted improvements.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 16 May 2023

Khushdeep Goyal, Davinder Singh, Harvinder Singh and Charanjit Singh

This paper aims to investigate the high temperature corrosion behaviour of ZrO2-reinforced Cr2O3 matrix-based composite coatings on ASTM-SA213-T-22 steel at 900°C in molten salt…

Abstract

Purpose

This paper aims to investigate the high temperature corrosion behaviour of ZrO2-reinforced Cr2O3 matrix-based composite coatings on ASTM-SA213-T-22 steel at 900°C in molten salt environment. The different coatings were deposited by high velocity oxy fuel (HVOF) method.

Design/methodology/approach

Hot corrosion studies were conducted in simulated boiler environment in silicon carbide tube furnace at 900°C for 50 cycles on bare and HVOF-coated boiler steel specimens. Each cycle consisted 50 h of heating in the simulated boiler environment followed by 20 min of cooling in air. The weight change measurements were performed after each cycle to establish the kinetics of corrosion using thermogravimetric technique. X-ray diffraction and scanning electron microscopy techniques were used to analyse the corroded specimens.

Findings

The addition of 20 Wt.% ZrO2 in Cr2O3 helped reduce corrosion rate by 89.25% as compared to that of uncoated specimen. The phase analysis revealed the presence of Cr2O3 and ZrO2 phases in composite coating matrix, which may have prevented the base metal from interacting with the corrosive elements present in the highly aggressive environment and thus had increased the resistance to hot corrosion.

Originality/value

It should be mentioned here that high temperature corrosion behaviour of thermally sprayed ZrO2–Cr2O3 composite coatings has never been studied, and to the best of the authors’ knowledge, it is not available in the literature. Hence, present investigation can provide valuable information for application of ZrO2-reinforced coatings in high temperature fuel combustion environments.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 April 2024

Gabi N. Nehme and Najat G. Nehme

The purpose of variable loading conditions (392 N-785N-392N-785N) with break-in period were used to study interactions between zinc dialkyl dithiophosphate (ZDDP) 0.1 P…

Abstract

Purpose

The purpose of variable loading conditions (392 N-785N-392N-785N) with break-in period were used to study interactions between zinc dialkyl dithiophosphate (ZDDP) 0.1 P% (phosphorus) and fine-grade molybdenum disulfide (MoS2) 3%, in different mixtures of NLGI 2 lithium stearate grease. Four-ball wear tests were used to evaluate the tribological properties of different grease mixtures such as coefficient of friction and wear. ASTM 2266 as reported by earlier studies is useful, but it is not representative of real-life applications where variable loads and speeds and different break-in periods play a role and could change the results and the nature of tribofilms.

Design/methodology/approach

In this study, chemical and mechanical properties of tribofilms were examined. Moreover, design of experiment was used to examine the data and shorten experimentation time. Research described here is investigating variable loading conditions for real-life applications by using a break-in period of 2 min at the start to minimize asperities and establish a clean surface. Design expert (DOE) analyzes responses to reveal those variables that are single factor and those that are multifactor whether synergistically or antagonistically.

Findings

The results indicated that spectrum loading with break-in period showed reduction in wear when tested in greases with ZDDP/MoS2 combinations. Ramping up or down the load every 7.5 min for a rotational speed of 1,200 rpm and a total of 36,000 revolutions or 30-min time slowed the wear properties of lithium-based grease under different MoS2 and ZDDP concentrations. Experiments indicated that wear was largely dependent on the loading condition and ZDDP additives during specific break-in period at 1,200 rotational speed. It is believed that MoS2 greases perform better under spectrum loading and under constant loading when mixed with ZDDP phosphorus.

Originality/value

This research indicates that there is a synergistic interaction between ZDDP, MoS2 and variable loading especially when a break-in period is applied. The results indicated that wear was largely dependent on the specific speed used with spectrum loading as presented in the energy dispersive spectroscopy and the Auger electron spectroscopy analysis, and thus a 3% MoS2 grease with ZDDP (phosphorus: 0.1 Wt.%) are needed to improve the wear resistance and improve the friction characteristics.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0016/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2024

Akhil Khajuria, Anurag Misra and S. Shiva

An experimental investigation for developing structure-property correlations of hot-rolled E410 steels with different carbon contents, i.e. 0.04wt.%C and 0.17wt.%C metal active…

Abstract

Purpose

An experimental investigation for developing structure-property correlations of hot-rolled E410 steels with different carbon contents, i.e. 0.04wt.%C and 0.17wt.%C metal active gas (MAG) and cold metal transfer (CMT)-MAG weldments was undertaken.

Design/methodology/approach

Mechanical properties and microstructure of MAG and CMT-MAG weldments of two E410 steels with varying content of carbon were compared using standardized mechanical testing procedures, and conventional microscopy.

Findings

0.04wt.%C steel had strained ferritic and cementite sub-structures in blocky shape and large dislocation density, while 0.17wt.%C steel consisted of pearlite and polygonal ductile ferrite. This effected yield strength (YS), and microhardness being larger in 0.04wt.%C steel, %elongation being larger in 0.17wt.%C steel. Weldments of both E410 steels obtained with CMT-MAG performed better than MAG in terms of YS, ultimate tensile strength (UTS), %elongation, and toughness. It was due to low heat input of CMT-MAG that resulted in refinement of weld metal, and subzones of heat affected zone (HAZ).

Originality/value

A substantial improvement in YS (∼9%), %elongation (∼38%), and room temperature impact toughness (∼29%) of 0.04wt.%C E410 steel is achieved with CMT-MAG over MAG welding. Almost ∼10, ∼12.5, and ∼16% increment in YS, %elongation, and toughness of 0.17wt.%C E410 steel is observed with CMT-MAG. Relatively low heat input of CMT-MAG leads to development of fine Widmanstätten and acicular ferrite in weld metal and microstructural refinement in HAZ subzones with nearly similar characteristics of base metal.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 January 2024

Linghuan Li, Shibin Sun, Ronghua Zhuang, Bing Zhang, Zeyu Li and Jianying Yu

This study aims to develop a polymer cement-based waterproof coating with self-healing capability to efficiently and intelligently solve the building leakage caused by cracking of…

Abstract

Purpose

This study aims to develop a polymer cement-based waterproof coating with self-healing capability to efficiently and intelligently solve the building leakage caused by cracking of waterproof materials, along with excellent durability to prolong its service life.

Design/methodology/approach

Ion chelators are introduced into the composite system based on ethylene vinyl acetate copolymer emulsion and ordinary Portland cement to prepare self-healing polymer cement-based waterproof coating. Hydration, microstructure, wettability, mechanical properties, durability, self-healing performance and self-healing products of polymer cement-based waterproof coating with ion chelator are investigated systematically. Meanwhile, the chemical composition of self-healing products in the crack was examined.

Findings

The results showed that ion chelators could motivate the hydration of C2S and C3S, as well as the formation of hydration products (C-S-H gel) of the waterproof coating to improve its compactness. Compared with the control group, the waterproof coating with ion chelator had more excellent water resistance, alkali resistance, thermal and UV aging resistance. When the dosage of ion chelator was 2%, after 28 days of curing, cracks with a width of 0.29 mm in waterproof coating could fully heal and cracks with a width of 0.50 mm could achieve a self-healing efficiency of 72%. Furthermore, the results reveal that the self-healing product in the crack was calcite crystalline CaCO3.

Originality/value

A novel ion chelator was introduced into the composite coating system to endow it with excellent self-healing ability to prolong its service life. It has huge application potential in the field of building waterproofing.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 October 2023

Fatma Bakal Gumus and Ahmet Yapici

The purpose of this paper is to investigate the effect of doping element on the structural, thermal properties, mechanical performance and the failure mechanism of hexagonal nano…

Abstract

Purpose

The purpose of this paper is to investigate the effect of doping element on the structural, thermal properties, mechanical performance and the failure mechanism of hexagonal nano boron nitride (h-BN)-reinforced basalt fabric (BF)/epoxy composites produced by hand lay-up and vacuum bagging technique. h-BN particles doped to composite materials increased the tensile, bending and impact strength of the composite at certain rates while 1 Wt. % h- BN addition shows the highest tensile and flexural strength.

Design/methodology/approach

The epoxy resin was doped with h-BN nanopowder at the certain rates (0, 1, 2 and 4 Wt.%) and the epoxy: hardener ratios used in the study were selected as 80%: 20% by weight. Then, with the aid of a roller by hand lay-up method, a mixture of epoxy + hardeners containing nanoparticles and nanoparticle-free were fed onto BFs, 12 layers of each dimension 30 cm × 30 cm. The surplus epoxy resin was moved away from the composite sheets using the vacuum bagging process and left to cure at room temperature for 24 h. ASTM D3039 for tensile, D7264 for three-point bending and D256 for Izod impact test were performed for the mechanical tests. After the tensile test, the morphologies of the fracture surface were examined with a stereomicroscope and various failure mechanisms are highlighted.

Findings

In this study, a series of basalt/epoxy composites with h-BN nanopowders have been prepared to identify the effect of filler ratio on mechanical properties. It has been known from the results of mechanical experiments that the addition of h-BN improves the mechanical performance of materials at a certain rate. The tensile and flexural strengths of h-BN doped composites, increase for concentrations of 1 Wt.% h-BN, but decrease with the increasing content of it. The basalt/epoxy resin composite with higher mechanical properties could be a potential material in the automotive and aerospace industries.

Originality/value

The aim of this study is to contribute to literature within the context of this new combination of composites and their mechanical properties, failure mechanisms. It presents detailed characterization of each composite by using X-ray differaction (XRD), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM…

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Article
Publication date: 3 July 2023

Zimin Li, Zilong Zhu, Jianqiu Wang, Meng Wang, Ting Hou, Qinghua Li and Pei Yu

Two corrosion inhibitors for closed cooling water systems, nitrite-based and mixture of nitrite and molybdate corrosion inhibitor, are often compared to each other. This study…

72

Abstract

Purpose

Two corrosion inhibitors for closed cooling water systems, nitrite-based and mixture of nitrite and molybdate corrosion inhibitor, are often compared to each other. This study aims to optimize these two inhibitors in terms of concentration and pH for carbon steel protection, with insights into the double layer structure on surface and its impact on corrosion inhibition.

Design/methodology/approach

Electrochemical analysis including electrochemical impedance spectroscopy and potentiodynamic test are carried out for quick assessment of corrosion inhibition efficiency and optimization, which is confirmed by immersion test and microscopic analysis. The electronic properties of the surface film are analyzed through Mott–Schottky method which provides new insights into the inhibition mechanism and the role of each component in mixture inhibitor.

Findings

Mixture of nitrite and molybdate is shown to present higher inhibition efficiency, owning to the double layer structure. Nitrite alone can form a protective surface film, whereas molybdate leads to an n-type semiconductive film with lower donor density, hence giving rise to a better inhibition effect.

Research limitations/implications

Surface after inhibitor treatment has been carefully characterized to the microscopic scale, implying the effect of micro-structure, chemical composition and electronic properties on the corrosion resistance. Inorganic corrosion inhibitors can be tuned to provide higher efficiency by careful design of surface film structure and composition.

Originality/value

Almost every study on corrosion inhibitor applies such method for quick assessment of corrosion inhibition effect. Mott–Schottky test is one of electrochemical methods that reveals the electronic properties of the surface film. Previous works have studied the surface layer mainly through X-ray photoelectron spectroscopy. This study provides another insight into the surface film treated by nitrite and molybdate through Mott–Schottky analysis, and relates this structure to the corrosion inhibition effect based on multiple analysis including electrochemistry, microscopic characterization, thermodynamics and interface chemistry.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 23