Search results

1 – 10 of over 15000
Article
Publication date: 28 June 2013

H.B. Lu, W.M. Huang and Y.T. Yao

The purpose of this paper is to examine the underlying mechanism and physico‐chemical requirements of chemo‐responsive shape change/memory polymers and to explore the future trend…

1641

Abstract

Purpose

The purpose of this paper is to examine the underlying mechanism and physico‐chemical requirements of chemo‐responsive shape change/memory polymers and to explore the future trend of development and potential applications.

Design/methodology/approach

Working mechanism in chemo‐responsive shape change/memory polymers is firstly identified. And then the physico‐chemical requirements for the representative polymers are characterized.

Findings

The different working mechanisms, fundamentals, physico‐chemical requirements and theoretical origins have been discussed. Current research and development on the fabrication strategies of chemo‐responsive shape change/memory polymers have been summarised. The future trend and potential applications have been explored and estimated.

Research limitations/implications

This review examines physico‐chemical requirements and theoretical origins necessary to achieve chemo‐responsiveness, and then discusses recent developments and future trends.

Practical implications

Shape change/memory polymers can be used in the broad field of bio‐ and/or medicine.

Originality/value

Breakthroughs and rapid development of chemo‐responsive shape change/memory polymers will significantly improve the research and development of smart materials, structures and systems.

Details

Pigment & Resin Technology, vol. 42 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 August 2015

Gregory I. Peterson, Mete Yurtoglu, Michael B Larsen, Stephen L. Craig, Mark A. Ganter, Duane W. Storti and Andrew J. Boydston

This paper aims to explore and demonstrate the ability to integrate entry-level additive manufacturing (AM) techniques with responsive polymers capable of mechanical to chemical…

Abstract

Purpose

This paper aims to explore and demonstrate the ability to integrate entry-level additive manufacturing (AM) techniques with responsive polymers capable of mechanical to chemical energy transduction. This integration signifies the merger of AM and smart materials.

Design/methodology/approach

Custom filaments were synthesized comprising covalently incorporated spiropyran moieties. The mechanical activation and chemical response of the spiropyran-containing filaments were demonstrated in materials that were produced via fused filament fabrication techniques.

Findings

Custom filaments were successfully produced and printed with complete preservation of the mechanochemical reactivity of the spiropyran units. These smart materials were demonstrated in two key constructs: a center-cracked test specimen and a mechanochromic force sensor. The mechanochromic nature of the filament enables (semi)quantitative assessment of peak loads based on color change, without requiring any external analytical techniques.

Originality/value

This paper describes the first examples of three-dimensional-printed mechanophores, which may be of significant interest to the AM community. The ability to control the chemical response to external mechanical forces, in combination with AM to process the bulk materials, potentiates customizability at the molecular and macroscopic length scales.

Details

Rapid Prototyping Journal, vol. 21 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 September 2021

Hwang Yi

This study aims to present an architectural application of 4D-printed climate-adaptive kinetic architecture and parametric façade design.

Abstract

Purpose

This study aims to present an architectural application of 4D-printed climate-adaptive kinetic architecture and parametric façade design.

Design/methodology/approach

This work investigates experimental prototyping of a reversibly self-shaping façade, by integrating the parametric design approach, smart material and 4D-printing techniques. Thermo-responsive building skin modules of two-way shape memory composite (TWSMC) was designed and fabricated, combining the shape memory alloy fibers (SMFs) and 3D-printed shape memory polymer matrices (SMPMs). For geometry design, deformation of the TWSMC was simulated with a dimension-reduced mathematical model, and an optimal arrangement of three different types of TWSMC modules were designed and fabricated into a physical scale model.

Findings

Model-based experiments show robust workability and formal reversibility of the developed façade. Potential utility of this module for adaptive building design and construction is discussed based on the results. Findings help better understand the shape memory phenomena and presented design-inclusive technology will benefit architectural communities of smart climate-adaptive building.

Originality/value

Two-way reversibility of 4D-printed composites is a topic of active research in material science but has not been clearly addressed in the practical context of architectural design, due to technical barriers. This research is the first architectural presentation of the whole design procedure, simulation and fabrication of the 4D-printed and parametrically movable façade.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 April 2017

Eujin Pei, Giselle Hsiang Loh, David Harrison, Henrique de Amorim Almeida, Mario Domingo Monzón Verona and Rubén Paz

The purpose of this paper is to extend existing knowledge of 4D printing, in line with Khoo et al. (2015) who defined the production of 4D printing using a single material, and 4D…

2425

Abstract

Purpose

The purpose of this paper is to extend existing knowledge of 4D printing, in line with Khoo et al. (2015) who defined the production of 4D printing using a single material, and 4D printing of multiple materials. It is proposed that 4D printing can be achieved through the use of functionally graded materials (FGMs) that involve gradational mixing of materials and are produced using an additive manufacturing (AM) technique to achieve a single component.

Design/methodology/approach

The latest state-of-the-art literature was extensively reviewed, covering aspects of materials, processes, computer-aided design (CAD), applications and made recommendations for future work.

Findings

This paper clarifies that functionally graded additive manufacturing (FGAM) is defined as a single AM process that includes the gradational mixing of materials to fabricate freeform geometries with variable properties within one component. The paper also covers aspects of materials, processes, CAD, applications and makes recommendations for future work.

Research limitations/implications

This paper examines the relationship between FGAM and 4D printing and defines FGAM as a single AM process involving gradational mixing of materials to fabricate freeform geometries with variable properties within one component. FGAM requires better computational tools for modelling, simulation and fabrication because current CAD systems are incapable of supporting the FGAM workflow.

Practical implications

It is also identified that other factors, such as strength, type of materials, etc., must be taken into account when selecting an appropriate process for FGAM. More research needs to be conducted on improving the performance of FGAM processes through extensive characterisation of FGMs to generate a comprehensive database and to develop a predictive model for proper process control. It is expected that future work will focus on both material characterisation as well as seamless FGAM control processes.

Originality/value

This paper examines the relationship between FGAM and 4D printing and defines FGAM as a single AM process that includes gradational mixing of materials to fabricate freeform geometries with variable properties within one component.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 April 2004

Steven Kimelman

There never has been a higher probability that your business will become directly or indirectly involved in a government fraud investigation. With the right advice, it need not…

Abstract

There never has been a higher probability that your business will become directly or indirectly involved in a government fraud investigation. With the right advice, it need not end in disaster. This article provides management with a practical guide on how properly to respond to a such an investigation. Never rely on “self‐help” strategies. Management acting on its own without counsel can lose the opportunity to navigate its first contact with the government’s investigators safely. Counsel should help management in determining how the government might approach your company and who might be under investigation, as well as providing clear and specific instructions to employees, deciding whether to conduct a parallel internal investigation, understanding “joint defense” or “common interest” agreements, and developing an action plan.

Details

Journal of Investment Compliance, vol. 5 no. 2
Type: Research Article
ISSN: 1528-5812

Keywords

Article
Publication date: 11 June 2020

Laiming Yu, Tianqi Zhang, Wenjun Wang, Yubing Dong and Yaqin Fu

This study aims to discuss the effect of carbon fiber on the electric-respone of shape memory epoxy property. Epoxy (EP) is a typical excellent thermosetting shape memory polymer…

Abstract

Purpose

This study aims to discuss the effect of carbon fiber on the electric-respone of shape memory epoxy property. Epoxy (EP) is a typical excellent thermosetting shape memory polymer (SMP). To enrich the shape memory epoxy (SMEP) responsive mode, the carbon fiber fabric-reinforced SMEP composites were prepared, and the mechanical properties and the electric- and light-responsive shape memory effect of the composites were investigated and confirmed.

Design/methodology/approach

The carbon fiber fabric/SMEP composites were prepared via a dipping method. The carbon fiber fabric was dipped into the waterborne epoxy emulsion and dried at room temperature and then post-cured in the oven at 120 °C for 2 h. The mechanical properties and the multi-responsive shape memory properties of the composites were tested and confirmed via tensile test instrument, DC electrical source and near-infrared (NIR) laser source control system.

Findings

The carbon fiber fabric/SMEP composites showed excellent electric- and light-responsive shape memory effect.

Research limitations/implications

High performance and multi-responsive shape memory materials have always been the goal of the scientists. Carbon fiber fabric and SMEP both consist of a good reputation in the field of composites, and the combination of both would set a solid foundation for getting a high performance and multi-responsive shape memory effect materials, which will enrich the responsive mode and broaden the application of SMEP.

Originality/value

Multi-responsive SMEP composites were prepared from waterborne epoxy and carbon fiber fabric.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 November 2023

Jinyu Zhang, Danni Shen, Yuxiang Yu, Defu Bao, Chao Li and Jiapei Qin

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused…

Abstract

Purpose

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused deposition modeling (FDM) 3D printing technology, and tries to refine the product development path for this composite.

Design/methodology/approach

Polylactic acid (PLA) printing filaments were deposited on prestretched Lycra-knitted fabric using desktop-level FDM 3D printing technology to construct a three-layer structure of thermally responsive 4D textiles. Subsequently, the effects of different PLA thicknesses and Lycra knit fabric relative elongation on the permanent shape of thermally responsive 4D textiles were studied. Finally, a simulation program was written, and a case in this study demonstrates the usage of thermally responsive 4D textiles and the simulation program to design a wrist support product.

Findings

The constructed three-layer structure of PLA and Lycra knitted fabric can self-form under thermal stimulation. The material can also achieve reversible transformation between a permanent shape and multiple temporary shapes. Thinner PLA deposition and higher relative elongation of the Lycra-knitted fabric result in the greater curvature of the permanent shape of the thermally responsive 4D textile. The simulation program accurately predicted the permanent form of multiple basic shapes.

Originality/value

The proposed method enables 4D textiles to directly self-form upon thermal, which helps to improve the manufacturing efficiency of 4D textiles. The thermal responsiveness of the composite also contributes to building an intelligent human–material–environment interaction system.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 August 2015

Mikihisa Nakano

The purpose of this paper is to provide some empirical evidence of the relationship between strategy and structure/processes in supply chains on the basis of the results of an…

1428

Abstract

Purpose

The purpose of this paper is to provide some empirical evidence of the relationship between strategy and structure/processes in supply chains on the basis of the results of an exploratory analysis using survey data from Japanese manufacturers.

Design/methodology/approach

This study explores the differences of structure/processes among the four supply chain strategies, that is, efficient, responsive, efficient/responsive, and traditional. Specifically, this study conducts a one-way analysis of variance of the structure/process variables by supply chain strategies.

Findings

As the results of exploratory analysis including follow-up interviews with survey respondents, this study found many differences between traditional and efficient/responsive firms on process variables. With regard to structure variables, the existence of a supply chain management department, which is a variable of internal structure, in responsive and efficient/responsive firms is statistically more likely than in efficient firms. In addition, this study found significant differences between efficient and responsive firms, and traditional firms on some variables of external structure.

Research limitations/implications

The results of this study explain why efficient/responsive firms can achieve high level of customer service and low operating cost, which is demonstrated by Qi et al. (2009). In addition, this study statistically ensures the validity of Stavrulaki and Davis’s (2010) proposition that firms with agile strategy tend to conduct opportunistic collaboration or have collaborative barriers with their suppliers because of their flexible supply base.

Originality/value

This is the first empirical study that explores the relationship among management elements in supply chains including not only strategy but also structure and processes. Through this study, it is implied that the strategy-structure-processes-performance paradigm adopted in this study is useful for exploring the patterns of other management elements that fit in with supply chain strategies.

Details

The International Journal of Logistics Management, vol. 26 no. 2
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 16 July 2021

Rana El-Dabaa and Islam Salem

Conventional motion mechanisms in adaptive skins require rigid kinematic mechanical systems that require sensors and actuation devices, hence impeding the adoption of zero-energy…

334

Abstract

Purpose

Conventional motion mechanisms in adaptive skins require rigid kinematic mechanical systems that require sensors and actuation devices, hence impeding the adoption of zero-energy buildings. This paper aims to exploit wooden responsive actuators as a passive approach for adaptive facades with dynamic shading configurations. Wooden passive actuators are introduced as a passive responsive mechanism with zero-energy consumption.

Design/methodology/approach

The study encodes the embedded hygroscopic parameters of wood through 4D printing of wooden composites as a responsive wooden actuator. Several physical experiments focus on controlling the printed hygroscopic parameters based on the effect of 3D printing grain patterns and infill height on the wooden angle of curvature when exposed to variation in humidity. The printed hygroscopic parameters are applied on two types of wooden actuators with difference in the saturation percentage of wood in the wooden filaments specifically 20% and 40% for more control on the angle of curvature and response behavior.

Findings

The study presents the ability to print wooden grain patterns that result in single and double curved surfaces. Also, printing actuators with variation in infill height control each part of wooden actuator to response separately in a controlled passive behavior. The results show a passive programmed self-actuated mechanism that can enhance responsive façade design with zero-energy consumption through utilizing both material science and additive manufacturing mechanisms.

Originality/value

The study presents a set of controlled printed hygroscopic parameters that stretch the limits in controlling the response of printed wood to humidity instead of the typical natural properties of wood.

Article
Publication date: 11 October 2022

Aniqa Junaid, Murtaza Najabat Ali, Mariam Mir and Sadia Hassan

The purpose of this paper is to present synthesis protocol of hydrogel composed of Chitosan (CS) and Poly(ethylene glycol) (PEG) and establish an understanding of its thermal…

121

Abstract

Purpose

The purpose of this paper is to present synthesis protocol of hydrogel composed of Chitosan (CS) and Poly(ethylene glycol) (PEG) and establish an understanding of its thermal responsive behavior. It aims to prove the basic temperature sensing ability of a novel CS-PEG-based hydrogel and define its sensing span.

Design/methodology/approach

This study includes synthesis of CS and PEG-based hydrogel samples by first performing dissolution of both constituents, respectively, and then adding Glutaraldehyde as the cross-linking agent. It further includes proposed hydrogel’s swelling studies and dynamic behavior testing, followed by hydrogel characterization by Fourier transform infrared spectroscopy, X-ray diffraction and SEM. The last section focuses on the use of proposed hydrogel as a temperature sensor.

Findings

Detailed experimental results show that a hydrogel comprising of CS and PEG presents a thermally responsive behavior. It offers potential to be used as a temperature responsive hydrogel-based sensor which could be used in medical applications.

Originality/value

This research study presents scope for future research in the field of thermally responsive bio-sensors. It provides basis for the fabrication of a thermal responsive sensor system based on hydrogels that can be used in specific medical applications.

Details

Sensor Review, vol. 42 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 15000