Search results

1 – 10 of 31
Open Access
Article
Publication date: 21 June 2022

Abhishek Das and Mihir Narayan Mohanty

In time and accurate detection of cancer can save the life of the person affected. According to the World Health Organization (WHO), breast cancer occupies the most frequent…

Abstract

Purpose

In time and accurate detection of cancer can save the life of the person affected. According to the World Health Organization (WHO), breast cancer occupies the most frequent incidence among all the cancers whereas breast cancer takes fifth place in the case of mortality numbers. Out of many image processing techniques, certain works have focused on convolutional neural networks (CNNs) for processing these images. However, deep learning models are to be explored well.

Design/methodology/approach

In this work, multivariate statistics-based kernel principal component analysis (KPCA) is used for essential features. KPCA is simultaneously helpful for denoising the data. These features are processed through a heterogeneous ensemble model that consists of three base models. The base models comprise recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit (GRU). The outcomes of these base learners are fed to fuzzy adaptive resonance theory mapping (ARTMAP) model for decision making as the nodes are added to the F_2ˆa layer if the winning criteria are fulfilled that makes the ARTMAP model more robust.

Findings

The proposed model is verified using breast histopathology image dataset publicly available at Kaggle. The model provides 99.36% training accuracy and 98.72% validation accuracy. The proposed model utilizes data processing in all aspects, i.e. image denoising to reduce the data redundancy, training by ensemble learning to provide higher results than that of single models. The final classification by a fuzzy ARTMAP model that controls the number of nodes depending upon the performance makes robust accurate classification.

Research limitations/implications

Research in the field of medical applications is an ongoing method. More advanced algorithms are being developed for better classification. Still, the scope is there to design the models in terms of better performance, practicability and cost efficiency in the future. Also, the ensemble models may be chosen with different combinations and characteristics. Only signal instead of images may be verified for this proposed model. Experimental analysis shows the improved performance of the proposed model. This method needs to be verified using practical models. Also, the practical implementation will be carried out for its real-time performance and cost efficiency.

Originality/value

The proposed model is utilized for denoising and to reduce the data redundancy so that the feature selection is done using KPCA. Training and classification are performed using heterogeneous ensemble model designed using RNN, LSTM and GRU as base classifiers to provide higher results than that of single models. Use of adaptive fuzzy mapping model makes the final classification accurate. The effectiveness of combining these methods to a single model is analyzed in this work.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 21 June 2019

Muhammad Zahir Khan and Muhammad Farid Khan

A significant number of studies have been conducted to analyze and understand the relationship between gas emissions and global temperature using conventional statistical…

3165

Abstract

Purpose

A significant number of studies have been conducted to analyze and understand the relationship between gas emissions and global temperature using conventional statistical approaches. However, these techniques follow assumptions of probabilistic modeling, where results can be associated with large errors. Furthermore, such traditional techniques cannot be applied to imprecise data. The purpose of this paper is to avoid strict assumptions when studying the complex relationships between variables by using the three innovative, up-to-date, statistical modeling tools: adaptive neuro-fuzzy inference systems (ANFIS), artificial neural networks (ANNs) and fuzzy time series models.

Design/methodology/approach

These three approaches enabled us to effectively represent the relationship between global carbon dioxide (CO2) emissions from the energy sector (oil, gas and coal) and the average global temperature increase. Temperature was used in this study (1900-2012). Investigations were conducted into the predictive power and performance of different fuzzy techniques against conventional methods and among the fuzzy techniques themselves.

Findings

A performance comparison of the ANFIS model against conventional techniques showed that the root means square error (RMSE) of ANFIS and conventional techniques were found to be 0.1157 and 0.1915, respectively. On the other hand, the correlation coefficients of ANN and the conventional technique were computed to be 0.93 and 0.69, respectively. Furthermore, the fuzzy-based time series analysis of CO2 emissions and average global temperature using three fuzzy time series modeling techniques (Singh, Abbasov–Mamedova and NFTS) showed that the RMSE of fuzzy and conventional time series models were 110.51 and 1237.10, respectively.

Social implications

The paper provides more awareness about fuzzy techniques application in CO2 emissions studies.

Originality/value

These techniques can be extended to other models to assess the impact of CO2 emission from other sectors.

Details

International Journal of Climate Change Strategies and Management, vol. 11 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 12 April 2019

Iman Ghalehkhondabi, Ehsan Ardjmand, William A. Young and Gary R. Weckman

The purpose of this paper is to review the current literature in the field of tourism demand forecasting.

14909

Abstract

Purpose

The purpose of this paper is to review the current literature in the field of tourism demand forecasting.

Design/methodology/approach

Published papers in the high quality journals are studied and categorized based their used forecasting method.

Findings

There is no forecasting method which can develop the best forecasts for all of the problems. Combined forecasting methods are providing better forecasts in comparison to the traditional forecasting methods.

Originality/value

This paper reviews the available literature from 2007 to 2017. There is not such a review available in the literature.

Details

Journal of Tourism Futures, vol. 5 no. 1
Type: Research Article
ISSN: 2055-5911

Keywords

Open Access
Article
Publication date: 23 August 2022

Armin Mahmoodi, Leila Hashemi, Milad Jasemi, Jeremy Laliberté, Richard C. Millar and Hamed Noshadi

In this research, the main purpose is to use a suitable structure to predict the trading signals of the stock market with high accuracy. For this purpose, two models for the…

1025

Abstract

Purpose

In this research, the main purpose is to use a suitable structure to predict the trading signals of the stock market with high accuracy. For this purpose, two models for the analysis of technical adaptation were used in this study.

Design/methodology/approach

It can be seen that support vector machine (SVM) is used with particle swarm optimization (PSO) where PSO is used as a fast and accurate classification to search the problem-solving space and finally the results are compared with the neural network performance.

Findings

Based on the result, the authors can say that both new models are trustworthy in 6 days, however, SVM-PSO is better than basic research. The hit rate of SVM-PSO is 77.5%, but the hit rate of neural networks (basic research) is 74.2.

Originality/value

In this research, two approaches (raw-based and signal-based) have been developed to generate input data for the model: raw-based and signal-based. For comparison, the hit rate is considered the percentage of correct predictions for 16 days.

Details

Asian Journal of Economics and Banking, vol. 7 no. 1
Type: Research Article
ISSN: 2615-9821

Keywords

Open Access
Article
Publication date: 25 August 2021

Weiwei Zhu, Jinglin Wu, Ting Fu, Junhua Wang, Jie Zhang and Qiangqiang Shangguan

Efficient traffic incident management is needed to alleviate the negative impact of traffic incidents. Accurate and reliable estimation of traffic incident duration is of great…

1523

Abstract

Purpose

Efficient traffic incident management is needed to alleviate the negative impact of traffic incidents. Accurate and reliable estimation of traffic incident duration is of great importance for traffic incident management. Previous studies have proposed models for traffic incident duration prediction; however, most of these studies focus on the total duration and could not update prediction results in real-time. From a traveler’s perspective, the relevant factor is the residual duration of the impact of the traffic incident. Besides, few (if any) studies have used dynamic traffic flow parameters in the prediction models. This paper aims to propose a framework to fill these gaps.

Design/methodology/approach

This paper proposes a framework based on the multi-layer perception (MLP) and long short-term memory (LSTM) model. The proposed methodology integrates traffic incident-related factors and real-time traffic flow parameters to predict the residual traffic incident duration. To validate the effectiveness of the framework, traffic incident data and traffic flow data from Shanghai Zhonghuan Expressway are used for modeling training and testing.

Findings

Results show that the model with 30-min time window and taking both traffic volume and speed as inputs performed best. The area under the curve values exceed 0.85 and the prediction accuracies exceed 0.75. These indicators demonstrated that the model is appropriate for this study context. The model provides new insights into traffic incident duration prediction.

Research limitations/implications

The incident samples applied by this study might not be enough and the variables are not abundant. The number of injuries and casualties, more detailed description of the incident location and other variables are expected to be used to characterize the traffic incident comprehensively. The framework needs to be further validated through a sufficiently large number of variables and locations.

Practical implications

The framework can help reduce the impacts of incidents on the safety of efficiency of road traffic once implemented in intelligent transport system and traffic management systems in future practical applications.

Originality/value

This study uses two artificial neural network methods, MLP and LSTM, to establish a framework aiming at providing accurate and time-efficient information on traffic incident duration in the future for transportation operators and travelers. This study will contribute to the deployment of emergency management and urban traffic navigation planning.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 19 March 2021

Vicente Ramos, Woraphon Yamaka, Bartomeu Alorda and Songsak Sriboonchitta

This paper aims to illustrate the potential of high-frequency data for tourism and hospitality analysis, through two research objectives: First, this study describes and test a…

1942

Abstract

Purpose

This paper aims to illustrate the potential of high-frequency data for tourism and hospitality analysis, through two research objectives: First, this study describes and test a novel high-frequency forecasting methodology applied on big data characterized by fine-grained time and spatial resolution; Second, this paper elaborates on those estimates’ usefulness for visitors and tourism public and private stakeholders, whose decisions are increasingly focusing on short-time horizons.

Design/methodology/approach

This study uses the technical communications between mobile devices and WiFi networks to build a high frequency and precise geolocation of big data. The empirical section compares the forecasting accuracy of several artificial intelligence and time series models.

Findings

The results robustly indicate the long short-term memory networks model superiority, both for in-sample and out-of-sample forecasting. Hence, the proposed methodology provides estimates which are remarkably better than making short-time decision considering the current number of residents and visitors (Naïve I model).

Practical implications

A discussion section exemplifies how high-frequency forecasts can be incorporated into tourism information and management tools to improve visitors’ experience and tourism stakeholders’ decision-making. Particularly, the paper details its applicability to managing overtourism and Covid-19 mitigating measures.

Originality/value

High-frequency forecast is new in tourism studies and the discussion sheds light on the relevance of this time horizon for dealing with some current tourism challenges. For many tourism-related issues, what to do next is not anymore what to do tomorrow or the next week.

Plain Language Summary

This research initiates high-frequency forecasting in tourism and hospitality studies. Additionally, we detail several examples of how anticipating urban crowdedness requires high-frequency data and can improve visitors’ experience and public and private decision-making.

Details

International Journal of Contemporary Hospitality Management, vol. 33 no. 6
Type: Research Article
ISSN: 0959-6119

Keywords

Open Access
Article
Publication date: 9 November 2023

Abdulmohsen S. Almohsen, Naif M. Alsanabani, Abdullah M. Alsugair and Khalid S. Al-Gahtani

The variance between the winning bid and the owner's estimated cost (OEC) is one of the construction management risks in the pre-tendering phase. The study aims to enhance the…

Abstract

Purpose

The variance between the winning bid and the owner's estimated cost (OEC) is one of the construction management risks in the pre-tendering phase. The study aims to enhance the quality of the owner's estimation for predicting precisely the contract cost at the pre-tendering phase and avoiding future issues that arise through the construction phase.

Design/methodology/approach

This paper integrated artificial neural networks (ANN), deep neural networks (DNN) and time series (TS) techniques to estimate the ratio of a low bid to the OEC (R) for different size contracts and three types of contracts (building, electric and mechanic) accurately based on 94 contracts from King Saud University. The ANN and DNN models were evaluated using mean absolute percentage error (MAPE), mean sum square error (MSSE) and root mean sums square error (RMSSE).

Findings

The main finding is that the ANN provides high accuracy with MAPE, MSSE and RMSSE a 2.94%, 0.0015 and 0.039, respectively. The DNN's precision was high, with an RMSSE of 0.15 on average.

Practical implications

The owner and consultant are expected to use the study's findings to create more accuracy of the owner's estimate and decrease the difference between the owner's estimate and the lowest submitted offer for better decision-making.

Originality/value

This study fills the knowledge gap by developing an ANN model to handle missing TS data and forecasting the difference between a low bid and an OEC at the pre-tendering phase.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 8 December 2023

Armin Mahmoodi, Leila Hashemi, Amin Mahmoodi, Benyamin Mahmoodi and Milad Jasemi

The proposed model has been aimed to predict stock market signals by designing an accurate model. In this sense, the stock market is analysed by the technical analysis of Japanese…

Abstract

Purpose

The proposed model has been aimed to predict stock market signals by designing an accurate model. In this sense, the stock market is analysed by the technical analysis of Japanese Candlestick, which is combined by the following meta heuristic algorithms: support vector machine (SVM), meta-heuristic algorithms, particle swarm optimization (PSO), imperialist competition algorithm (ICA) and genetic algorithm (GA).

Design/methodology/approach

In addition, among the developed algorithms, the most effective one is chosen to determine probable sell and buy signals. Moreover, the authors have proposed comparative results to validate the designed model in this study with the same basic models of three articles in the past. Hence, PSO is used as a classification method to search the solution space absolutelyand with the high speed of running. In terms of the second model, SVM and ICA are examined by the time. Where the ICA is an improver for the SVM parameters. Finally, in the third model, SVM and GA are studied, where GA acts as optimizer and feature selection agent.

Findings

Results have been indicated that, the prediction accuracy of all new models are high for only six days, however, with respect to the confusion matrixes results, it is understood that the SVM-GA and SVM-ICA models have correctly predicted more sell signals, and the SCM-PSO model has correctly predicted more buy signals. However, SVM-ICA has shown better performance than other models considering executing the implemented models.

Research limitations/implications

In this study, the authors to analyze the data the long length of time between the years 2013–2021, makes the input data analysis challenging. They must be changed with respect to the conditions.

Originality/value

In this study, two methods have been developed in a candlestick model, they are raw based and signal-based approaches which the hit rate is determined by the percentage of correct evaluations of the stock market for a 16-day period.

Details

Journal of Capital Markets Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-4774

Keywords

Open Access
Article
Publication date: 6 May 2022

Mohammed Ayoub Ledhem

The purpose of this paper is to predict the daily accuracy improvement for the Jakarta Islamic Index (JKII) prices using deep learning (DL) with small and big data of symmetric…

1385

Abstract

Purpose

The purpose of this paper is to predict the daily accuracy improvement for the Jakarta Islamic Index (JKII) prices using deep learning (DL) with small and big data of symmetric volatility information.

Design/methodology/approach

This paper uses the nonlinear autoregressive exogenous (NARX) neural network as the optimal DL approach for predicting daily accuracy improvement through small and big data of symmetric volatility information of the JKII based on the criteria of the highest accuracy score of testing and training. To train the neural network, this paper employs the three DL techniques, namely Levenberg–Marquardt (LM), Bayesian regularization (BR) and scaled conjugate gradient (SCG).

Findings

The experimental results show that the optimal DL technique for predicting daily accuracy improvement of the JKII prices is the LM training algorithm based on using small data which provide superior prediction accuracy to big data of symmetric volatility information. The LM technique develops the optimal network solution for the prediction process with 24 neurons in the hidden layer across a delay parameter equal to 20, which affords the best predicting accuracy based on the criteria of mean squared error (MSE) and correlation coefficient.

Practical implications

This research would fill a literature gap by offering new operative techniques of DL to predict daily accuracy improvement and reduce the trading risk for the JKII prices based on symmetric volatility information.

Originality/value

This research is the first that predicts the daily accuracy improvement for JKII prices using DL with symmetric volatility information.

Details

Journal of Capital Markets Studies, vol. 6 no. 2
Type: Research Article
ISSN: 2514-4774

Keywords

Open Access
Article
Publication date: 3 August 2020

Rajashree Dash, Rasmita Rautray and Rasmita Dash

Since the last few decades, Artificial Neural Networks have been the center of attraction of a large number of researchers for solving diversified problem domains. Due to its…

1196

Abstract

Since the last few decades, Artificial Neural Networks have been the center of attraction of a large number of researchers for solving diversified problem domains. Due to its distinguishing features such as generalization ability, robustness and strong ability to tackle nonlinear problems, it appears to be more popular in financial time series modeling and prediction. In this paper, a Pi-Sigma Neural Network is designed for foretelling the future currency exchange rates in different prediction horizon. The unrevealed parameters of the network are interpreted by a hybrid learning algorithm termed as Shuffled Differential Evolution (SDE). The main motivation of this study is to integrate the partitioning and random shuffling scheme of Shuffled Frog Leaping algorithm with evolutionary steps of a Differential Evolution technique to obtain an optimal solution with an accelerated convergence rate. The efficiency of the proposed predictor model is actualized by predicting the exchange rate price of a US dollar against Swiss France (CHF) and Japanese Yen (JPY) accumulated within the same period of time.

Details

Applied Computing and Informatics, vol. 19 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 10 of 31