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Abstract
Purpose – Efficient traffic incident management is needed to alleviate the negative impact of traffic incidents. Accurate and reliable estimation of
traffic incident duration is of great importance for traffic incident management. Previous studies have proposed models for traffic incident duration
prediction; however, most of these studies focus on the total duration and could not update prediction results in real-time. From a traveler’s
perspective, the relevant factor is the residual duration of the impact of the traffic incident. Besides, few (if any) studies have used dynamic traffic
flow parameters in the prediction models. This paper aims to propose a framework to fill these gaps.
Design/methodology/approach – This paper proposes a framework based on the multi-layer perception (MLP) and long short-term memory
(LSTM) model. The proposed methodology integrates traffic incident-related factors and real-time traffic flow parameters to predict the residual
traffic incident duration. To validate the effectiveness of the framework, traffic incident data and traffic flow data from Shanghai Zhonghuan
Expressway are used for modeling training and testing.
Findings – Results show that the model with 30-min time window and taking both traffic volume and speed as inputs performed best. The area
under the curve values exceed 0.85 and the prediction accuracies exceed 0.75. These indicators demonstrated that the model is appropriate for this
study context. The model provides new insights into traffic incident duration prediction.
Research limitations/implications – The incident samples applied by this study might not be enough and the variables are not abundant. The
number of injuries and casualties, more detailed description of the incident location and other variables are expected to be used to characterize the
traffic incident comprehensively. The framework needs to be further validated through a sufficiently large number of variables and locations.
Practical implications – The framework can help reduce the impacts of incidents on the safety of efficiency of road traffic once implemented in
intelligent transport system and traffic management systems in future practical applications.
Originality/value – This study uses two artificial neural network methods, MLP and LSTM, to establish a framework aiming at providing accurate
and time-efficient information on traffic incident duration in the future for transportation operators and travelers. This study will contribute to the
deployment of emergency management and urban traffic navigation planning.
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1. Introduction

Traffic incidents cause casualties, direct economic losses and
traffic congestions which have been studied over the years
(Adler et al., 2013; Hojati et al., 2016). For instance,
Skabardonis et al. (2003) found out that in California, about
72% of non-recurrent congestions and 13%–30% of traffic
delays in peak hours are associated with traffic incidents.
In addition, traffic incidents lead to a high probability of
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secondary incidents. The risk of a second incident has been
estimated to be six times greater than that of a primary incident
(Wang et al., 2019). These factors highlight the importance of
implementing proper and timely countermeasures for traffic
incidents such as traffic flow control and incident response
resource allocation (Haule et al., 2019).
Accurate and time-efficient prediction methods for the traffic

incident duration are required for formulating and implementing
traffic incident countermeasures (Chung, 2010). Traffic incident
duration is defined as the period between the time when an
incident occurs to the time when traffic recovers to normal
(Hojati et al., 2014; Highway Capacity Manual, 2010). Large
number of studies have been devoted to the prediction of traffic
incident duration. Dimitriou and Vlahogianni (2015) proposed a
fuzzy rule-based system to estimate highway traffic incident
durations. Lin et al. (2016) proposed an improved M5P model
by combining a hazard-based duration model to minimize data
heterogeneity in traffic incident duration prediction.
However, most studies used the total incident duration as the

prediction object, which means that the prediction results are
given at the time when the incident occurred and will not
update over time. In fact, the residual incident duration, i.e.
how long the negative impact of the incident will continue in
the future, has the most practical application value. Given a
real-time prediction, transportation operators could adjust and
optimize the countermeasures for traffic incidents (Adler et al.,
2013). Travelers on the way could also decide whether to
choose an alternate route.
In addition, few (if any) studies have taken into account the

dynamic traffic flow parameters. Dynamic traffic flow parameters
refer to the real-time temporal sequences of traffic parameters
including speed, traffic volume and time occupancy during the
duration of the traffic incident. It is generally accepted that the
real-time traffic flow status has an effect on traffic incident
duration (Ma et al., 2017; Ru et al., 2017).
Given the research gaps in the real-time prediction and the

employment of dynamic traffic flow parameters, this study uses
two artificial neural networks (ANN) methods, multi-layer
perception (MLP) and long short-term memory (LSTM), to
establish a framework aiming at providing accurate and time-
efficient information on traffic incident duration in the future
for transportation operators and travelers. This study will
contribute to the deployment of emergency management and
urban traffic navigation planning.

2. Literature review

Different statistical methods and machine learning methods
have been applied in traffic incident duration prediction,
including tree-based method (Lin et al., 2016; Weng et al.,
2015), Bayesian classifier (Cong et al., 2018; Ozbay and
Noyan, 2006; Zou et al., 2021), hazard-based method (Haule
et al., 2019; Li et al., 2017; Li et al., 2015) and ANN (Lee et al.,
2017). Among these methods, the accelerated failure time
(AFT)model is the most widely used hazard-based method (Li
et al., 2017; Li et al., 2015). It assumes that the factors related
to the incident will accelerate or decelerate the incident
duration; thus, it is easily interpreted (Kay and Kinnersley,
2002). Chung (2010) has established a log-logistic AFTmetric
model based on the Korean Freeway accident data and the

results yielded a reasonable prediction. Hojati et al. (2013)
proposed a series of parametric AFT survival models of
incident duration based on three common distributions, i.e.
log-logistic, lognormal andWeibull. Zou et al. (2021) proposed
a Bayesian Model Averaging model to predict traffic incident
clearance time. Besides, decision tree models were also widely
applied to predict incident clearance time due to it can
determine the importance of explanatory variables (Weng et al.,
2019). Ma et al. (2017) developed a novel approach, gradient
boosting decision trees, to predict incident clearance time using
different traffic parameters.
However, the structures of these machine learning methods

are limited in applying temporal sequences and dynamic traffic
flow parameters are not suitable as inputs. Previous studies have
used traffic status and other variables in describing traffic flow
conditions as substitutes. Lin et al. (2016) applied “congestion
or not” as a variable of the prediction model for traffic incident
duration. Zou et al. (2018) adopted “peak hour or not” along
with 13 other variables to investigate the dependence between
incident clearance and response time. Some studies also used
traffic flow characteristics. For example, Ghosh et al. (2014)
applied the “85th/15th percentile speed” and “peak hour
volume” to examine the impact of influence factors on the
clearance time of incidents. Hojati et al. (2016) considered
posted speed limit, road capacity, recurrent flow, the ratio of
speed before and after the incident, etc., as variables to model
travel time reliability. However, as traffic incidents are generally
a sustaining process and traffic flow status changes over time,
the application of stationary traffic flow parameters cannot
provide an accurate picture of the situation. Therefore, a new
method integrated with dynamic traffic flow information is
required.
In recent years, ANN methods have been shown to perform

well in short- and long-term forecasting applications with steady
data-driven capabilities (Liu et al., 2019). LSTMneural network
is one of ANN and performs well in dealing with temporal
sequences. LSTM has been widely used in short-term traffic
flow forecasting and could be used as a reference in processing
dynamic traffic flow parameters (Polson and Sokolov, 2017).
Short-term traffic flow forecasting applies existing traffic flow
data to continuously predict the traffic flow and travel time for a
period in the future (usually within 15min). Ma et al. (2015)
used LSTM to predict the speed of the next 2 min by applying
data from microwave traffic detectors and the mean absolute
percentage error of the model applying both speed and volume
as inputs is under 5%. Gu et al. (2019) proposed a two-layer
deep learning framework based on LSTM and gated recurrent
unit neural network to predict lane-level traffic speed. The
detailed methodological review for clearance time prediction of
road incidents can refer to Tang et al. (2020). Nevertheless,
LSTM neural network has not yet been used to predict the
incident duration, which alsomotivated this study.
The LSTM model provides new insights on using real-time

traffic flow parameters. Moreover, traffic incident-related
factors should be taken into account, which calls for a hybrid
model in addition to the LSTM. MLP is a standard ANN
model and it is capable of dealing with classification problems.
In this study, the LSTM and MLP methods are combined to
build a framework to use two forms of variables as inputs to
predict the short-term traffic incident duration.
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3. Methodology

The methodology section provides details about concepts
and definitions; key parameters and factors and deep learning
modeling approach.

3.1 Concepts and definitions
3.1.1 Decomposition of traffic incident
The process of an incident is generally divided into four parts:
detection time (time duration between incident occurrence and
incident discovery), the response time (time duration between
incident discovery and response team arrival), clearance time
(time duration between response team arrival and incident
clearance) and recovery time (time duration between incident
clearance and traffic normalization) (Zhang et al., 2019;
Highway Capacity Manual, 2010), as shown in Figure 1. To
provide timely decision support to road traffic managers and
drivers, this study proposes a real-time method to predict the
total traffic incident duration. This study uses the velocity
thermogram method, which compares the velocity of the
vehicle under the influence of the accident with the historical
average speed of a certain road section to determine the impact
range of an accident. The detailed process of how to obtain the
accurate incident duration can refer to Zhang et al. (2019).

3.1.2 Dynamic prediction for traffic incident duration
The traffic incident management handbook suggested that
systems with recorded information should be updated at least
every 5 to 10 min during peak periods in urban areas
(Farradyne, 2000). This model could provide the information
dynamically every 1min. The objective of this predictionmodel
is the residual incident duration at each update moment. The
residual incident duration in this study was classified into three
categories based on two levels of incident duration. The two
incident levels are 5 and 10min. The reason for choosing 5 and
10min as incident duration levels are as follows:
� The levels of 5 and 10 min are more practical. In urban

expressways, traffic incident duration is mostly short. In
the data set this study used, 35% is less than 5 min while
70% is less than 15 min. Too long intervals may lose
practical significance.

� The levels of 5 and 10 min are sufficient for upstream
drivers and road managers to make decisions and
preparations. Speed limit in urban expressways is usually
80 km/h and cars can drive more than 5 kilometers in
5 min, more than 10 kilometers in 10 min. This distance is

enough for the driver to leave the expressway at the
previous exit and choose another route.

3.2 Key parameters and factors
3.2.1 Traffic flow parameters
In the four parts of the incident duration, traffic flow status is
changing constantly. During the detection time and response time,
the crash vehicles may occupy one or more lanes and decreasing
traffic capacity, whichwill cause a decline in upstream traffic speed
and traffic flow. During the clearance time, the impact on traffic
congestion will change according to the processing methods.
If medical response, police or towing cars are required, the
congestion may get worse. After the incident is cleared, traffic
congestion will gradually ease. Consequently, dynamic traffic flow
parameters will reflect the process of traffic incident handling.
This study uses dynamic traffic flow parameters as the inputs.
Comparison is provided in the case study section.
Referring to the previous studies on traffic incident risk

estimation with traffic flow conditions (Oh et al., 2005; Fang
et al., 2016), the traffic flow parameters (i.e. traffic flow and
traffic speed) 5–30min before the traffic incident to the end of
traffic impact have been applied in this study.

3.2.2 Incident-related factors
Previous studies indicated that incident duration has a strong
correlation with incident characteristics, e.g. incident type and
incident severity (Adler et al., 2013). Traffic incident-related
factors could be categorized as temporal factors, spatial factors,
environmental factors, incident detail factors and operational
factors (Abouaïssa et al., 2016). These factors are summarized
in Table 1.

3.3 Deep learningmodeling approach based on long
short-termmemory andmulti-layer perception
network
As shown in Figure 2, the proposed framework contains four
parts: data processing, LSTM neural network for incident
clearance prediction and MLP network for incident clearance
prediction. Two kinds of variables, traffic-related factors and
traffic flow data, are applied as inputs of the framework to
predict the short-term traffic incident duration. Each part of the
frameworkwill be detailed below.

3.3.1 Data processing
Traffic flow data and incident-related factors are two parts of
inputs of the framework. They should be processed first before

Figure 1 Incident duration decomposition
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being imported into the model. Data processing contains two
parts: slide the time window to get more samples and data
normalization.

3.3.1.1 Slide the time window to get more samples. The input
variables of an incident are {V1, V2, V3, . . ., Vn, Vol, Spd, Y},
where {V1, V2, V3, . . ., Vn} denote incident related factors,
Vol and Spd denote traffic volume data and speed data (i.e.
Traffic flow data), Y denotes traffic incident duration.
In Figure 2, at each updated moment, the length of traffic
flow data is fixed, i.e. the length of the time window. The
recommended time window length is 5–30min. Figure 3
shows the process of sliding the time window when the time
window length is 5min.
For each incident, the time window sequences Voltw1, Voltw2,

. . ., Voltwm are paired with the same incident-related factors V1,
V2, V3, . . ., Vn and incident duration Y. m in Voltwm indicates
the number of time windows corresponding to the incident.
After sliding the time window, these two variables should be
added or updated:
� Update incident duration Y. At the update moment, the

total incident duration Y should be replaced by the
residual incident duration Y0. As mentioned above, two
forms of output results are proposed: Label 1 – whether
Y0 is greater than 5 min. Categorical variables ylabel1 =
{0,1}, where 0 – Y0 � 5 min and 1 – Y0 > 5 min. Label 2 –

whether Y0 is greater than 10 min. Categorical variables
ylabel2 = {0,1}, where 0 – Y0 � 10min and 1 – Y0 > 10min.

� Add a new variable elapsed time (Vn11) and update it at
each prediction moment. Elapsed time means how long
the incident has lasted. It is a continuous variable and the
unit is minutes.

In summary, an incident sample should contain the following
variables:

V1;V2;V3; . . . ;Vn1 1;Voltw1;Spdtw1;Y
0� �
;

V1;V2;V3; . . . ;Vn1 1;Voltw2;Spdtw2;Y
0� �
;

. . .
V1;V2;V3; . . . ;Vn1 1;Voltwm;Spdtwm;Y

0� �

3.3.1.2 Data normalization. In the multi-factor evaluation
system, each factor may have different magnitudes or units. The
impact of the factor will be enlarged or minified depending on
the value of the factor if it is used for analysis directly. Therefore,
to ensure the reliability of the results and the equal contribution
of each factor, the raw data need to be normalized before being
input onto the framework. This study performs min-max
normalization on the raw data to make the result fall into the
interval [0,1]. The transformation function is as follows:

x� ¼ x�min
max�min

(1)

where max is the maximum value and min is the minimum
value of the sample data.

Table 1 Incident-related factors and explanations

Categories Variables Values

Temporal factors Time of the daya 0:00–23:59
Day of the week Monday to Sunday
Season Spring, summer, autumn and winter

Spatial factors Location of the incident –

Type of road Tunnels, elevated roads and general roads
Distance from CBD (Continuous variable)

Environmental factors Weather Sunny, rainy, foggy and snowy
Visibililty 0–10 km
Traffic condition Congested or not
Pavement condition Dry or wet

Incident details Incident type –

Occupied lanesb 1, 2, 3 or more and road closed
The number of involved cars 1, 2, 3 or more
Injuries and deaths None, 1, 2, 3 or more
Incident number on the same road in one day None, 1, 2, 3 or more
Secondary incidents Yes, no
Involvement of a bike Yes, no
Work zone involved Yes, no
Incident on HOV lane Yes, no
Incident severityc A1, A2 and A3
Shoulder availability Yes, no

Operational factors Police requirement Yes, no
Towing cars Yes, no
Medical response Yes, no
Patrol involved Yes, no
Traffic control –

Moving to shoulder Yes, no

Notes: aSimilar expression: peak hour or not, daytime or night; bSimilar expression: capacity reduction; cA1: People died during an accident, A2: People
injured during an accident or died after an accident and A3: Property damage; HOV = high occupancy vehicle
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3.3.2 Long short-term memory neural network for incident
clearance prediction
LSTM is a powerful type of artificial recurrent neural network
(RNN), which is good at dealing with sequential data (Song
et al., 2020). As shown in, Figure 4, similar to the traditional
MLP, RNN consists of an input layer, hidden layer and output
layer. The hidden layers of RNN are more like a block. For
each block, the output ht is calculated with both xt (input of the
model at time t) and ht–1 (the result of the memory cell at the
last time t – 1):

ht ¼ 1 Uxt 1Wht�1 1 bð Þ (2)

where U and W represent weight coefficients, 1 represents
activation function and b represents bias.

The output at time t is:

ot ¼ Vht 1 c (3)

whereV represents weight coefficient and c represents bias.
The output of themodel is:

yt ¼ s otð Þ (4)

where s represents activation function.
Based on the memory of the previous learning content, RNN

is mostly used for machine translation and speech recognition
(Su et al., 2019). However, during the training of the RNN
model, the information at all times before will be traced back
when calculating the partial derivative of the loss function to the

Figure 2 Overview of the proposed framework

Figure 3 The process of sliding the time window
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weight coefficient, which leads to the continuous multiplication
of the derivative of the activation function. The continuous
multiplication will cause the gradient to be too large (named
“gradient explosion”) or too small (named “gradient
disappearance”), therefore the model learning efficiency is
unstable or the information may be weakened. Aiming at solving
this problem, Hochreiter and Schmidhuber (1997) proposed the
LSTM which could overcome long-term dependencies and
determine the best time window automatically. As shown in
Figure 5, an LSTM neural network consists of one input layer,
one hidden layer and one output layer. In the hidden layer,
different from the RNN, there are three “gates” in eachmemory
cell, namely, “forget gate,” “input gate” and “output gate.” The
gate can control whether the previous status information passes
and affects the subsequent predictions.
� The first gate is the “forget gate” which decides whether the

information will be discarded. It reads ht–1 and xt and outputs
a value between 0 and 1, where 1 means “completely
reserved” and 0means “completely discarded.”

ft ¼ s Wf ht�1; xt½ �1 bf
� �

(5)

� The next step is to determine what new information is
stored in the cell state, which will be calculated in the
“input gate” by the following functions:

it ¼ s Wi ht�1; xt½ �1 bið Þ (6)

Ct ¼ ft � Ct�1 1 it � g Wc ht�1; xt½ �1 bCð Þ (7)

� Finally, the output value will be calculated in “output
gate” by the following functions:

ot ¼ s Wo ht�1; xt½ �1 boð Þ (8)

ht¼ot � h Ctð Þ (9)

In the output layer, the output value is calculated as:

yt ¼ Wym ht 1 by (10)

where s , g and h represent the activation function, bf, bi, bC, bo,
by representing the bias, Wf, Wi, Wc, Wo, Wym represent the
weight.
Traffic flow data are input to the part of LSTM after

normalization. The LSTM part is implemented by Python’s
Keras Library. The construction of this part involves the
configuration of the following parameters:
� Input_shape. The input dimensions and lengths of the

model, determined by the time window length and the
number of categories for traffic flow parameters (traffic
volume, speed or both volume and speed). For example,
if the time window length is 30 min and both two traffic
parameters are the inputs, the input_shape format
is 30� 2.

Figure 4 Structure of a RNN

Figure 5 Structure of a LSTM network
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� Units. The number of hidden layer neural nodes in the
LSTM neural network. It is determined according to the
time window length.

The LSTM layer is connected to the DENSE layer. The
DENSE layer is the name of the fully connected layer in
Python’s Keras Library. All neurons in the fully connected layer
are connected to each other and have a directional relationship.
Configuration of two parameters in this layer are set as follows:
� Units. This is the output dimension of this part, it is set to 1.
� Activation. The activation function of this layer. It is Relu

function here:

s xð Þ ¼ 0; x < 0
x; x � 0

�
(11)

3.3.3Multi-Layer perception network for incident clearance
prediction
MLP is a well-known method of ANN. As shown in Figure 6,
MLP consists of one input layer, one or more hidden layers and
one output layer. Neurons in each layer are fully connected to
the next layer. The input of the model is denoted as x = {x1, x2,
x3,. . .. . ., xi}. Each node in the hidden layer (l) is denoted as
al ¼ al1; a

l
2; a

l
3; . . . . . . 0Calm

� �
and can be calculated as follows:

alm ¼ s

Xn

j

wl
ma

l�1
j 1 blm

0
@

1
A (12)

where wl
mi represents the weight coefficient between node al�1

i
and node alm. Furthermore, blm represents the bias of the node
alm and s represents the activation function.
The output of the model is denoted as y = {y1, y2, y3,. . .. . .,

yk} and can be calculated as:

yk ¼ w

Xm

j

wt
kma

l
j 1 bk

0
@

1
A (13)

where w represents the activation function.
Training MLP is based on back propagation by adjusting

weight coefficients and bias according to the error gradient
descent method. The expression for updating the weight
coefficient is as follows:

wi : wi � a
@

@wi
L Wð Þ (14)

where a indicates the learning rate, L(W) indicates loss
function and @

@wi
L Wð Þ indicates the partial derivative of the loss

function L(W) for the biased wi. Loss function is to evaluate the
model prediction results and the target of model training is to
get the minimum loss value Lmin(W). For binary classification
problems, the most common loss function is binary cross-
entropy:

L Wð Þ ¼ �
Xq

i¼1

yilogZi 1 1� yið Þlog 1� yið Þ (15)

where Zi indicates the true value, yi indicates the prediction
value of themodel and q indicates the number of samples.
The output of the LSTM part and the normalized incident-

related factors are integrated into this part first. The integration
is implemented by function keras.concatenate in Python. Then
the integrated variables are input into the part of the MLP
network of two hidden layers.
For determining the clearance of the incident: if the result of

from modeling is Y0 > 5min, slide the time window and get the
traffic flow data of the next time window into the next cycle; if
Y0 � 5min, the clearance of the incident will happen in the
coming 5mins, then the programwill be terminated.
In the case study section, the model will be tested and

validated. The false-positive rate (FPR) and true positive rate
(TPR) are often used to comprehensively evaluate the ability of
the prediction model. The receiver operating characteristic
(ROC) curve and Kolmogorov-Smirnov (KS) curve is created
by plotting the TPR against the FPR at various threshold

Figure 6 Multi-layer perceptron flowchart
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settings. Besides, the area under the ROC curve (AUC), which
provides an aggregatemeasure of performance across all possible
classification thresholds, was used in this study to evaluate the
prediction performance.

4. Case study

4.1 Description of sites and data
This study selected the traffic incident data and traffic flow
parameters in Shanghai Zhonghuan Expressway as a case
study. The total length is 70 km approximately with a speed
limit of 80 km/h. The expressway is two-directional with four
lanes in each direction. Different data sources are used for
incident-related factors and traffic flow information. Incident-
related factors are from the Road Network Monitoring Center,
while Traffic flow information was collected from the inductive
loop detectors along the Zhonghuan Expressway.
A total number of 4,041 indecent records were originally

collected, covering the period from April 1, 2017 to October 7,
2017. Table 2 presents detailed descriptions of the indicent-
related variables collected in the case study. Traffic flow

information was obtained from 176 inductive loop detector sets
(loops at the same detection spot are considered as one set)
distributed along the Shanghai Zhonghuan Expressway, with
800m intervals on average. These loop data contain both speed
and traffic volume information with an acquisition frequency of
20 s. To be effectively applied in the modeling framework,
traffic data was converted into 1-min intervals by aggregating
the traffic volume and averaging the speed. Data cleansing and
matching work was conducted to remove vague traffic incident
records and to pair up the incidents with the associated traffic
flow information. After data cleansing and data matching,
391 incidents with their traffic flow information paired were
selected. Note that no secondary incidents were observed,
therefore they were not considered in this study.

4.2 Data processing
4.2.1 Comparison groups as modeling input
To determine the best input parameter combination, two
comparative tests were conducted: test with different traffic flow
parameter combinations: traffic volume, speed, both traffic

Table 2 Descriptions of incident related variables

Variable Description Codes-values No. of incidents Average duration (minutes)

Day of the week Day of the incident 1-Monday
2-Tuesday
3-Wednesday
4-Thursday
5-Friday
6-Saturday
7-Sunday

58
44
46
48
74
75
46

12.7
12.8
13.1
13
12.9
13
12.9

Hour of the day Hour of the incident 0-early morning-00:00	07:00
1-morning peak-7:00	9:00
2-morning-09:00	11:00
3-noon-11:00	13:00
4-afternoon-13:00	17:00
5-evening peak-17:00	19:00
6-evening-19:00	24:00

5
56
60
60
129
48
33

13
13.9
12.8
12.8
12.7
12.8
12.8

Weather condition Weather 0-sunny
1-rainy

344
47

12.8
12.8,

Traffic condition Traffic condition 0-unblocked
1-slow passage
2-congestion

187
200

4

12.9
12.7
12.4

Location type Type of the incident location 0-ramp
1-roadside
2-middle of the road
3-unknown

124
54
53
160

12.8
12.7
12.8
12.7

Incident type Incident category 0-multi vehicle
1-dual vehicle
2-broke down
3-wrong operation
4-fire

48
226
113

1
3

12.8
12.7
12.8
8

12.9
Occupied lanes Number of lanes occupied by the incident 0-not occupying lanes

1- occupying one lane
2- occupying two lanes
3- occupying three lanes
4- occupying four lanes

3
365
22
0
1

7
12.8
12.8
–

2
Police presence Whether the police are required 0-no

1-yes
308
83

12.7
12.8
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volume and speed; test with different time windows lengths:
T = (5min, 10min, 20min, 30min). Meanwhile, to verify the
effects of the dynamic traffic flow parameter, a comparative test
between the application of dynamic traffic flow parameters and
the application of static traffic flow parameters after processed
by principal component analysis (PCA) is conducted.

4.2.2 Preparation for modeling
With the time window sliding procedure, approximately 4,200
samples are obtained. During this procedure, as the status
of a small number of loop detectors was missing or invalid,
corresponding samples were deleted. After expanding the
sample through the time window sliding procedure, the sample
ratio of the two categories in Label 1 is 2:3 and the sample ratio
of the two categories in Label 2 is 3:2. As the sample imbalance
problem was not significant and no processing was needed. All
samples (approximately 4,200) are divided into a training set
and test set. The sample ratio is 80% and 20%, therefore 3,360
samples are in the training set and 840 samples are in the test
set approximately.

4.3 Results and discussions
4.3.1 Selection of modeling inputs and parameters
Comparative analysis for modeling input selection was
conducted and results are provided in Table 3.

4.3.1.1 Input of traffic flow parameters. As provided in
Table 3, AUC values are the highest (0.84 for Label 1 and 0.89
for Label 2) when synthesizing both traffic volume and speed
as inputs of the model, compared to cases using simply the
traffic volume or the speed as input. Therefore, using traffic
volume and speed as the modeling inputs has the best
performance, as it can fully describe the traffic flow
characteristics. The combination of traffic volume and speed is
recommended as inputs for predicting incident clearances.

4.3.1.2 Time window length. Then, both traffic flow
parameters including traffic volume and speed are integrated as
the model inputs. Different time window lengths were tested
and compared. The results from Table 3 indicated that the

model with 30-min time window performed best with the
highest AUC value of 0.86 for Label 1 and 0.94 for Label 2.
This is probably because that the longer time series can better
reflect the changes in traffic flow during the process of traffic
incident development. Therefore, a time window length s set to
be 30min.

4.3.1.3 Dynamic traffic parameters and static traffic parameters.
The model with the best performance, i.e. the model of 30-min
time window length and application of both speed and traffic
volume, is applied. Thenmodeling approach using dynamic traffic
parameters was compared to that uses static traffic parameters. As
from Table 3, when using dynamic traffic parameters as inputs,
AUC values were higher for both prediction tasks represented by
Label 1 (if clearance occurs in 5min) and 2 (if clearance occurs in
10min). Therefore, dynamic traffic parameters were preferred in
the modeling approach. After the process, the cumulative variance
contribution of each principal component reached 89.1%,which is
consistentwith previous studies (Ru et al., 2017).

4.3.2 Prediction performance with selected parameters
Finally, It can be clearly found from Ru et al. (2017) that the
prediction performance of the model applying dynamic traffic
flow parameters is significantly better than the model applying
traffic flow parameters processed by PCA. The result confirmed
that the dynamic traffic flow parameters outperformed static
traffic flowparameters.
This paper provides the ROC curve, KS curve and confusion

matrix of the proposed model with optimal parameter
combination, as shown in Figure 7, Figure 8 andTable 4. It can
be seen from Figure 7 that the AUC values of the LABEL 1 and
LABEL 2 are 0.86 and 0.94, respectively. As the ROC curve of
LABEL 2 is closer to the upper left corner, the predictive
performance of this classifier is better than that of LABEL1.
Besides, as shown in Figure 8, it can be seen that the prediction
performance of the model is better by observing the change of
FPR and TPR with the threshold. The confusion matrix of the
proposed model with optimal parameter combination is shown
in Table 4. The prediction accuracy of LABEL 1 and LABEL 2
are 80.7% and 85.7%, respectively.

Table 3 Modeling results

Results – Different traffic flow parameter inputs
Parameter combination AUC value

Label 1 Label 2
Traffic volume 0.75 0.85
Speed 0.79 0.83
Both traffic volume and speed 0.84 0.89
Results – Different time window lengths
Time window lengths AUC value

Label 1 Label 2
5min 0.84 0.89
10min 0.82 0.88
20min 0.80 0.90
30min 0.86 0.94

Results – Dynamic traffic parameters and traffic parameters processed by PCA
Type of traffic flow parameters AUC value

Label 1 Label 2
Dynamic traffic flow parameters 0.86 0.94
Traffic flow parameters 0.64 0.70
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5. Conclusions

This paper proposes a framework based on MLP and LSTM
to predict the residual incident duration in real-time. The

framework uses both real-time traffic flow parameters and
traffic incident-related factors. The traffic flow parameters are
input into the framework in time series and then processed by
LSTM. The traffic incident-related factors are input into the

Figure 7 ROC curve of the best performing model

Figure 8 KS curve of the best performing model

Table 4 Confusion matrix of the best performing model

Results of LABEL 1 Results of LABEL 2
Prediction condition Prediction condition

0 1 (%) 0 1 (%)
True condition 0 261 67 79.6% True condition 0 412 78 84.1%

1 96 421 81.4% 1 40 297 88.1%
Global accuracy = 80.7% Global accuracy = 85.7%
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framework in terms of categorical variables, integrated with
the output of the part of LSTMand then processed byMLP. The
framework was tested through traffic incident samples recorded
by traffic police and traffic flow data obtained by loop detectors
in Shanghai Zhonghuan Expressway. The trained framework
performed well and shows promise in applying dynamic traffic
flowparameters in traffic incident duration prediction.
Themain contribution of this study is to propose a framework,

which initially applies dynamic traffic flow parameters in traffic
incident duration prediction. Dynamic traffic flow parameters
better reflect the change of traffic status over traffic incident
duration compared with traffic flow characteristics such as posted
speed, 85th percentile speed and the ratio of average speed at the
time of the incident to that in history. Based on the case study of
the Shanghai Zhonghuan Expressway, the impact of both traffic
incident-related factors and real-time traffic flow parameters on
traffic incident duration are considered in the framework. The
results show that the inputs of a 30-min time window, applying
both dynamic traffic volume and speed had the best performance
and are recommended in future studies.
It is worth mentioning that the framework features high

computing power and can provide convenience for road
managers and drivers with little delay in future practical
applications. However, thismodel lacks interpretation compared
with traditional hazard-based models. Besides, the correlation
between input variables is ignored and will be further discussed
in future research. The effect of each variable is demonstrated
through the statistical method. In addition, the incident samples
applied by this study are not enough and the variables are not
abundant. The number of injuries and casualties, more detailed
description of the incident location and other variables are
expected to be used to characterize the traffic incident
comprehensively. The framework needs to be further validated
through a sufficiently large number of variables and locations.
Further research is desirable to study sequential prediction.

Not all traffic incident-related factors can be acquired at the time
when the incident is reported, on the contrary, more detailed
information is gradually acquired over time. For instance,
whether towing cars are required is known as the traffic police
arrive at the incident site. A more realistic prediction method
that continuously updates model variables and results over time
will providemore accurate estimation and reliable references.
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